Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)-mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875-878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193-204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171230PMC
http://dx.doi.org/10.1083/jcb.200503139DOI Listing

Publication Analysis

Top Keywords

calcium signals
16
drosophila embryos
12
calcium
10
endoplasmic reticulum
8
cell cycle
8
cycle calcium
8
calcium transients
8
syncytial drosophila
8
microdomains bounded
4
bounded endoplasmic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!