Stability and flexibility in the structure of the hyperthermophile DNA-binding protein Sac7d.

Biochemistry

Laboratory for Structural Biology, Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA.

Published: October 2005

Sac7d is a chromatin protein from the hyperthermophile Sulfolobus acidocaldarius that severely kinks duplex DNA with negligible change in protein structure. In previous work, the overall stability of Sac7d has been well-characterized with a global analysis of the linkage of folding, protonation, and anion binding. We extend that work here with NMR measurements of global stability as well as the distribution of stability and flexibility in the solution structure. Native state amide hydrogen exchange has been used to identify the most-protected core amide protons which exchange through global unfolding. The pH and temperature dependence of stability defined by native state exchange is in excellent agreement with the free energy surface determined by a linkage analysis of the dependence of folding on pH, salt, and temperature. These results confirm that the deltaC(P) obtained from a Kirchhoff analysis of DSC data (i.e., deltaH vs Tm) is incorrect, and an accurate description of the protein stability curve for Sac7d requires a measure of the thermodynamic contributions of protonation and anion binding. Amide hydrogen exchange, along with generalized order parameters determined by 15N relaxation data, demonstrates considerable variation in stability throughout the structure with some of the least stable regions occurring at the N- and C-termini. The most stable and inflexible region of the backbone occurs primarily in the DNA-binding beta-sheet which is responsible for bending DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi051167dDOI Listing

Publication Analysis

Top Keywords

stability flexibility
8
protonation anion
8
anion binding
8
native state
8
amide hydrogen
8
hydrogen exchange
8
stability
7
structure
4
flexibility structure
4
structure hyperthermophile
4

Similar Publications

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells.

Nanomicro Lett

January 2025

The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.

View Article and Find Full Text PDF

Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg ions in stabilizing the structure of an RNA aptamer was investigated.

View Article and Find Full Text PDF

Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis.

Cells

December 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!