Specific anion effects on the optical rotation of glucose and serine.

Biopolymers

Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.

Published: February 2006

Optical activity is directly related to molecular conformation through the anisotropic polarizabilities of molecules and the refractive index of materials. L-amino acids and D-sugars are characteristic essential bioactive molecules. Since molecular recognition and enzyme activity are related to the conformation of substrates, the relevance of optical activity to biological processes is evident. Specific ion, or Hofmeister, effects that occur with electrolytes at moderately high concentrations modify the behavior of interfaces, molecular forces between membranes, of bulk solutions, of enzymes, and even of DNA. Such effects are universal. Here we report a study on the change in optical rotation induced by some sodium salts for the enantiomers of serine and glucose in water solution. The optical rotation is shown to depend on the kind of anion and on the salt concentration. To obtain further insights into the mechanism behind the phenomenon, Fourier transform infrared (FTIR) spectral studies of serine and glucose solutions in electrolytes were also carried out. The results suggest that it is the differences in interactions of anions at specific chemical sites of the solutes that are responsible for the effects. These forces depend strongly on anion polarizability in water. Such specific ion preferential interactions can affect conformation and internal field, and result in significant changes in optical rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.20389DOI Listing

Publication Analysis

Top Keywords

optical rotation
16
optical activity
8
specific ion
8
serine glucose
8
optical
6
specific
4
specific anion
4
effects
4
anion effects
4
effects optical
4

Similar Publications

Channeled Polarimetry for Magnetic Field/Current Detection.

Sensors (Basel)

January 2025

Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 109, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria.

Magneto-optical magnetic field/current sensors are based on the Faraday effect, which involves changing the polarized state of light. Polarimetric methods are therefore used for measuring polarization characteristics. Channeled polarimetry allows polarization information to be obtained from the analysis of the spectral domain.

View Article and Find Full Text PDF

Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight materials. Although FSSW offers significant advantages over traditional fusion welding, the oxidation of the interfacial bond line remains one of the most challenging issues, affecting the quality and strength of the joint under both static and cyclic loading conditions. In this experimental study, inert argon gas was employed to surround the joint, aiming to prevent or minimize the formation of the interfacial oxides.

View Article and Find Full Text PDF

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!