Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200501943DOI Listing

Publication Analysis

Top Keywords

beta-beta bond
4
bond long-range
4
long-range antiferromagnetic
4
antiferromagnetic coupling
4
coupling directly
4
directly linked
4
linked copperii
4
copperii silverii
4
silverii diporphyrins
4
beta-beta
1

Similar Publications

Unravelling the Mechanical and Superconducting Properties in Borophene with Multicentered Bonds.

J Phys Chem Lett

January 2025

State Key Laboratory of Superhard Materials, Key Laboratory of Material Simulation Methods & Software of Ministry of Education, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China.

The multicentered bonds present in planar borophene lead to a more complex structure and richer chemical properties. Herein, we use first-principles calculations to investigate the electronic, mechanical, and superconducting properties of various borophene polymorphs, focusing on the newly synthesized β and β phases. Notably, in order to balance and optimize the electron filling of the valence bond orbitals, the planar borophene structure is composed of a mixture of triangular lattices and hexagonal holes with multicentered bonding, which further enhances the stability of the structure and possesses a rare polymorphic property.

View Article and Find Full Text PDF

A Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.

View Article and Find Full Text PDF

Catalytic Asymmetric Synthesis and Applications of Stereogenic β'-Methyl Enones and β,β'-Dimethyl Ketones.

Angew Chem Int Ed Engl

December 2024

Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

The "Magic Methyl" effect has received tremendous interest in medicinal chemistry due to the significant pharmacological and physical modification of properties that have been observed upon introducing a methyl group, especially, a stereogenic methyl group into potential chiral drug candidates. The prevalence of stereogenic β-methyl ketone structural motifs in bioactive compounds and natural products has long motivated the development of enantioselective strategies toward their synthesis. Herein, we have rationally designed a Rh-catalyzed asymmetric monohydrogenation of readily-available β'-methylene conjugated enones with high efficiency and remarkable site-selectivity and enantioselectivity control for the practical construction of enantioenriched β'-methyl unsaturated enones that are difficult to access by other methods.

View Article and Find Full Text PDF

β,β-Disubstituted enesulfinamides undergo stereoselective nucleophilic addition to the formaldehyde imines, in situ formed from tosylmethylcarbamates, affording α-aminomethylated ketimines bearing a challenging acyclic quaternary stereocenter substituted by two sterically and electronically similar groups (e.g., Me and Et).

View Article and Find Full Text PDF

Pyridoxal phosphate (PLP)-dependent enzymes play essential roles in metabolism and have found applications for organic synthesis and as enzyme therapeutics. The vinylglycine ketimine (VGK) subfamily hosts a growing set of enzymes that play diverse roles in primary and secondary metabolism. However, the molecular determinates of substrate specificity and the complex acid-base chemistry that enables VGK catalysis remain enigmatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!