Hereditary hyperferritinaemia-cataract syndrome (HHCS) is a relatively rare disorder with an autosomal dominant trait. It can be caused by various mutations within the iron responsive element (IRE) of the L-ferritin gene. These mutations result in an increased translation of L-ferritin mRNA and consequently the accumulation of L-ferritin in different fluids and tissues. HHCS patients present with an isolated hyperferritinaemia in the absence of any sign of iron overload. Early onset bilateral cataract, probably due to accumulation of ferritin crystals in the lens, is the only presenting clinical manifestation. Internists, especially gastrohepatologists, should be aware of this syndrome and differentiate it from haemochromatosis which is much more frequent, in order to avoid unnecessary imaging procedures, liver biopsies and an eventual venesection therapy, which will only lead to microcytic anaemia. In the present paper we report the first cases with HHCS diagnosed in Belgium. At diagnosis, the seven known affected members of three different families had ferritin levels between 603 and 3432 microg/l (normal < 150 microg/l), and this in combination with normal iron and transferrin values. All of them were known with early-onset bilateral cataract and our postulated diagnosis of HHCS was confirmed after genetic sequencing of the L-ferritin gene, which showed a C39U point mutation in the first family, and an A40G point mutation in the IRE loop segment in the two other families. The other investigated members of the three families had normal ferritin values, no history of early-onset cataract and genetic analyses could not reveal a mutation in the IRE of their L-ferritin gene. In current clinical practice, gastroenterologists should remember that elevated ferritin levels in the absence of documented iron overload is not haemochromatosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00042737-200511000-00016DOI Listing

Publication Analysis

Top Keywords

l-ferritin gene
12
hereditary hyperferritinaemia-cataract
8
hyperferritinaemia-cataract syndrome
8
ire l-ferritin
8
iron overload
8
bilateral cataract
8
members three
8
three families
8
ferritin levels
8
point mutation
8

Similar Publications

JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis.

Int J Mol Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) is the most lethal gynecological cancer often diagnosed at an advanced stage due to a lack of effective biomarkers. Ferritin light chain (FTL) is implicated in the development of various cancers, but its impact on OC remains unknown.

Research Design And Methods: Bioinformatics methods were utilized to analyze FTL.

View Article and Find Full Text PDF

Over the past two decades, ferritin has emerged as a promising nanoparticle for drug delivery, catalyzing the development of numerous prototypes capable of encapsulating a wide array of therapeutic agents. These ferritin-based nanoparticles exhibit selectivity for various molecular targets and are distinguished by their potential biocompatibility, unique symmetrical structure, and highly controlled size. The hollow interior of ferritin nanoparticles allows for efficient encapsulation of diverse therapeutic agents, enhancing their delivery and effectiveness.

View Article and Find Full Text PDF

Myeloid-specific ferritin light chain deletion does not exacerbate sepsis-associated AKI.

Am J Physiol Renal Physiol

July 2024

Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.

Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits.

View Article and Find Full Text PDF

Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!