Objective: To investigate the effect of norepinephrine on static (right atrial pressure, pulmonary artery occlusion pressure ) and dynamic (pulse pressure variation and arterial systolic pressure variation) preload indicators in experimental hemorrhagic shock.

Design: Prospective controlled experimental study.

Setting: Animal research laboratory.

Subjects: Six anesthetized and mechanically ventilated dogs.

Interventions: Dogs were instrumented for measurement of arterial blood pressure, pulmonary artery catheter derived variables including right atrial pressure, pulmonary artery occlusion pressure, and cardiac output. Simultaneously, pulse pressure variation and systolic pressure variation were calculated. Pulse pressure variation is the difference between the maximal and the minimal value of pulse pressure divided by the mean of the two values and is expressed as a percentage. Systolic pressure variation is the difference between the maximal and the minimal systolic pressure and is expressed as an absolute value. After baseline measurements, hemorrhagic shock was induced by a stepwise cumulative blood withdrawal of 35 mL.kg of body weight. A second set of hemodynamic measurement was made 30 mins after bleeding. The third set was made 30 mins later under norepinephrine.

Measurements And Main Results: Mean arterial pressure and cardiac output decreased after hemorrhage (p < .05), whereas right atrial pressure and pulmonary artery occlusion pressure remained unchanged. Baseline pulse pressure variation and systolic pressure variation increased significantly with hemorrhage, from 12% (9%) to 28% (11.5%) (p < .001) and from 12.5 (6.5) to 21 (8.2) mm Hg (p < .05), respectively. Norepinephrine induced a significant increase of cardiac output and a significant decrease of pulse pressure variation and systolic pressure variation but did not significantly change right atrial pressure or pulmonary artery occlusion pressure values. Stroke volume was correlated to pulse pressure variation and systolic pressure variation but was not correlated to right atrial pressure or pulmonary artery occlusion pressure.

Conclusion: Our study confirms the superiority of dynamic variables (pulse pressure variation and systolic pressure variation) over static ones (right atrial pressure and pulmonary artery occlusion pressure) in assessing cardiac preload changes in hemorrhagic shock. However, norepinephrine could significantly reduce the value of these dynamic variables and mask a true intravascular volume deficit possibly by shifting blood from unstressed to stressed volume.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ccm.0000182801.48137.13DOI Listing

Publication Analysis

Top Keywords

pressure variation
56
pulse pressure
32
systolic pressure
32
pressure
29
pressure pulmonary
28
pulmonary artery
28
atrial pressure
24
artery occlusion
24
occlusion pressure
20
variation systolic
20

Similar Publications

Browsing by ungulates is commonly assumed to target the upper parts of sapling crowns, leading to reduced vertical growth or even growth cessation. However, the extent to which browsing induces shifts in resource allocation toward lateral growth remains unclear. This study explores the impact of browsing intensity (BI) and light availability on the architectural traits of six temperate tree species, focusing on height-diameter ratio (H/D), crown slenderness (CL/CW), and crown irregularity (CI) across sapling height classes.

View Article and Find Full Text PDF

Iliac Vein Compression Syndrome (IVCS) is a common risk factor for deep vein thrombosis in the lower extremities. The objective of this study was to investigate whether employing a porous medium model to simulate the compressed region of an iliac vein could improve the reliability and accuracy of Computational Fluid Dynamics (CFD) analysis outcomes of IVCS. Pre-operative Computed Tomography (CT) scan images of patients with IVCS were utilized to reconstruct models illustrating both the compression and collateral circulation of the iliac vein.

View Article and Find Full Text PDF

Background: Life's Essential 8 (LE8) score, developed by the American Heart Association, assesses cardiovascular health using eight components: diet, physical activity, nicotine exposure, sleep health, body mass index, lipids, blood glucose, and blood pressure. Liver function is a critical indicator of overall health, with impairments linked to numerous chronic diseases. While the LE8 score has been extensively studied in relation to cardiovascular outcomes, its association with liver function remains underexplored.

View Article and Find Full Text PDF

Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review.

J Intensive Care Soc

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA.

Introduction: Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS.

View Article and Find Full Text PDF

Background: In this study, we investigated the genetic variability and population structure of the New World screwworm fly Cochliomyia hominivorax. We tested the hypothesis that the species exhibits a center-periphery distribution of genetic variability, with higher genetic diversity in central populations (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!