Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii.

Int J Biol Macromol

Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama 240-8501, Japan.

Published: October 2005

Leptothrix cholodnii is an aerobic sheath-forming bacterium often found in oligotrophic and metal-rich aquatic environments. The sheath of this bacterium was isolated by selectively lysing the cells. Glycine and cysteine were the major amino acids of the sheath. The sheath was readily dissolved in hydrazine, and a polysaccharide substituted with cysteine was recovered from the solution. Galactosamine, glucosamine and galacturonic acid were detected in the hydrazinolysate by gas liquid chromatography analysis. FAB-MS analysis of the hydrazinolysate suggested a sugar sequence of HexN-GalA-HexN-HexN. Methylation linkage analysis revealed the presence of 4-linked GalA, 3-linked HexN and 4-linked HexN. The sulfhydryl groups of the sheath were used for labeling with the fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The labeled sheath (ABD-sheath) was partially hydrolyzed and three fluorescent fragments were purified by HPLC. One of them was identified as ABD-cysteine. The second one was found to be the ABD-cysteine tetramer. Another fragment was indicated to be a pentasaccharide substituted with ABD-cysteine by nuclear magnetic resonance (NMR) analysis. It can be assumed that the polysaccharide and peptide moieties of the sheath are connected by a cysteine residue. NMR analysis of the hydrazinolysate revealed that the polysaccharide moiety of the sheath was constructed from a pentasaccharide repeating unit containing 2-amino-2-deoxygalacturonic acid (GalNA), as shown below. -->4)-alpha-GalNA-(1-->4)-alpha-D-GalN(p)-(1-->4)-alpha-D-GalA(p)-(1-->4)-beta-D-GlcN(p)-(1-->3)-beta-D-GalN(p)-(1-->.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2005.09.002DOI Listing

Publication Analysis

Top Keywords

sheath
8
leptothrix cholodnii
8
analysis hydrazinolysate
8
nmr analysis
8
analysis
5
structural analysis
4
analysis sheath
4
sheath sheathed
4
sheathed bacterium
4
bacterium leptothrix
4

Similar Publications

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Direct reprogramming of human fibroblasts into hair-inducing dermal papilla cell-like cells by a single small molecule.

Biochem Pharmacol

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China. Electronic address:

Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs.

View Article and Find Full Text PDF

Safety of accessing brachial veins for large-bore upper extremity venous thrombectomy using ClotTriever Thrombectomy System.

CVIR Endovasc

January 2025

Department of Radiology, Section of Vascular and Interventional Radiology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA, 98195, USA.

Purpose: To evaluate access site adverse events following ClotTriever-mediated large-bore mechanical thrombectomy via small upper extremity deep veins (< 6-mm).

Materials And Methods: Twenty patients, including 24 upper extremity venous access sites, underwent ClotTriever-mediated large-bore thrombectomy of the upper extremity and thoracic central veins for symptomatic deep vein obstruction unresponsive to anticoagulation. Patients without follow-up venous duplex examinations (n = 3) were excluded.

View Article and Find Full Text PDF

Subclavian Ansae Stimulation on Cardiac Hemodynamics and Electrophysiology in Atrial Fibrillation: A Target for Sympathetic Neuromodulation.

JACC Clin Electrophysiol

December 2024

St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:

Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.

Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.

View Article and Find Full Text PDF

Eversion carotid endarterectomy (CEA) in awake patients is performed using cervical plexus blocks (CPBs) with or without carotid artery sheath infiltration (CASI) under ultrasound guidance. Although adequacy of anesthesia (AoA) guidance monitors nociception/antinociception balance, its impact on intraoperative analgesia quality and perioperative outcomes in awake CEA remains unexplored. Existing literature lacks evidence on whether AoA-guided anesthesia enhances clinical outcomes over standard techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!