Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates proliferation, differentiation, and function of hematopoietic progenitor cells. Aside from expansion of hematopoietic cells, GM-CSF has shown efficacy in other diseases, including Crohn's disease. While GM-CSF being clinically used in humans, the ability to perform mechanistic studies in murine models is difficult due to the limited availability and rapid clearance of murine GM-CSF in the peripheral blood. To address these issues, we efficiently expressed murine GM-CSF under the control of the AOX1 gene promoter in Pichia pastoris using the Mut(S) strain KM71H. We describe the unique conditions that are required for efficient production by high-density fermentation and purification of mGM-CSF protein. Recombinant mGM-CSF protein was purified by tangential flow ultrafiltration and preparative reverse phase chromatography. To address limited half life or rapid clearance in mice, recombinant murine GM-CSF was modified by lysine-directed polyethylene glycol conjugation (PEGylation). PEG-modified and unmodified proteins were characterized by amino terminus sequence analysis and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Under the mild reaction conditions, the recombinant protein is efficiently modified by PEGylation on an average of 2-3 sites per molecule. In vivo treatment of mice with PEGylated mGM-CSF, but not the unmodified recombinant mGM-CSF, reproduces the potent colony stimulating effects of human GM-CSF in patients on myeloid progenitor populations, as assessed by FACs analysis. This simplified approach for the expression, purification, and modification of a biologically potent form of murine GM-CSF should facilitate the study of central mechanisms of action in murine disease models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2005.08.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!