The goal of this work was to identify the esterases in human plasma and to clarify common misconceptions. The method for identifying esterases was nondenaturing gradient gel electrophoresis stained for esterase activity. We report that human plasma contains four esterases: butyrylcholinesterase (EC 3.1.1.8), paraoxonase (EC 3.1.8.1), acetylcholinesterase (EC 3.1.1.7), and albumin. Butyrylcholinesterase (BChE), paraoxonase (PON1), and albumin are in high enough concentrations to contribute significantly to ester hydrolysis. However, only trace amounts of acetylcholinesterase (AChE) are present. Monomeric AChE is seen in wild-type as well as in silent BChE plasma. Albumin has esterase activity with alpha- and beta-naphthylacetate as well as with p-nitrophenyl acetate. Misconception #1 is that human plasma contains carboxylesterase. We demonstrate that human plasma contains no carboxylesterase (EC 3.1.1.1), in contrast to mouse, rat, rabbit, horse, cat, and tiger that have high amounts of plasma carboxylesterase. Misconception #2 is that lab animals have BChE but no AChE in their plasma. We demonstrate that mice, unlike humans, have substantial amounts of soluble AChE as well as BChE in their plasma. Plasma from AChE and BChE knockout mice allowed identification of AChE and BChE bands without the use of inhibitors. Human BChE is irreversibly inhibited by diisopropylfluorophosphate, echothiophate, and paraoxon, but mouse BChE spontaneously reactivates. Since human plasma contains no carboxylesterase, only BChE, PON1, and albumin esterases need to be considered when evaluating hydrolysis of an ester drug in human plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2005.09.002 | DOI Listing |
Chem Biodivers
January 2025
Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka, Japan.
In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.
View Article and Find Full Text PDFAMB Express
January 2025
Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Cardiac Surgery Critical Care Center Inpatient Ward 1, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Objective: To investigate the effectiveness of initial hemostatic resuscitation(IHR) on the treatment of bleeding with recombinant human coagulation factor VIIa after cardiac surgery.
Methods: The clinical data of patients who received rFVIIa hemostatic treatment after cardiac surgery at Beijing Anzhen Hospital, Capital Medical University, from January 1, 2021, to December 31, 2021 were retrospectively collected. A total of 152 cases were included in the study.
Talanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!