Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis.

Microbes Infect

Department of Zoology, Faculty of Sciences, University of El-Minia, El-Minia, Egypt.

Published: February 2006

AI Article Synopsis

  • The study highlights the high cost of defense mechanisms in the malaria vector Anopheles gambiae, linking immune responses and malaria infections to reproductive costs, specifically through the apoptosis of ovarian follicular cells.
  • Apoptosis in these follicular cells was triggered not only by malaria infection but also by artificial immune challenges that stimulate the immune system, resulting in a significant increase in cell death.
  • The findings suggest a trade-off between reproductive success and immune defense, indicating that both natural and induced immune responses lead to a loss of developing oocytes, ultimately impacting egg production.

Article Abstract

The employment of defense mechanisms is recognized as a costly life-history trait. In the malaria vector Anopheles gambiae, reproductive costs have been associated with both humoral and cellular innate immune responses and also with malaria infection. The resorption of developing oocytes associated with malaria infection is preceded by the programmed cell death, or apoptosis, of follicular cells. Here we demonstrate that apoptosis in ovarian follicular epithelial cells also occurs when mosquitoes are subjected to artificial immune-elicitors that induce a melanization response or humoral antimicrobial activity. Caspases are key cysteine proteases involved in apoptosis. Caspase-like activity was detected in epithelial cells in approximately 4.0% of the developing ovarian follicles of untreated, blood-fed, mosquitoes. Lipopolysaccharide injection resulted in a significant increase in anti-Micrococcus luteus humoral activity and a significant increase of 257.7% of follicles exhibiting apoptosis compared to results after saline injections. Melanization also triggered follicular apoptosis, which increased by 106.25% or 134.37% in Sephadex C-25 or G-25 bead-inoculated mosquitoes, respectively, compared to that in sham-injected ones. Ovaries from Plasmodium yoelii nigeriensis-infected mosquitoes exhibited a significant increase in follicular apoptosis of 440.9% compared to non-infected ones. Thus, at the time point investigated, infection had a much greater effect than artificial immune-elicitors. Death of follicular epithelial cells has been shown to lead to follicle resorption and hence a decrease in egg production. We propose the trade-off between reproductive fitness and immune defense in A. gambiae operates via the induction of apoptosis in ovarian follicles and that different immune responses impose costs via the same pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2005.06.026DOI Listing

Publication Analysis

Top Keywords

malaria infection
12
follicular apoptosis
12
epithelial cells
12
reproductive costs
8
anopheles gambiae
8
apoptosis
8
immune responses
8
apoptosis ovarian
8
follicular epithelial
8
artificial immune-elicitors
8

Similar Publications

Several interventional strategies have been implemented in malaria endemic areas where the burden is high, that include among others, intermittent preventive treatment (IPT), a tactic that blocks transmission and can reduce disease morbidity. However, the implementation IPT strategies raises a genuine concern, intervening the development of naturally acquired immunity to malaria which requires continuous contact with parasite antigens. This study investigated whether dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) IPT in schoolchildren (IPTsc) impairs IgG reactivity to six malaria antigens.

View Article and Find Full Text PDF

Purpose Of Review: Antimicrobial resistance is an escalating public health threat in Africa, and an awareness of the devastating impact on children is growing. This review highlights the prevalence and patterns of antimicrobial resistance among children in Africa, focusing on pathogens responsible for bloodstream infections, community-acquired pneumonia, bacterial meningitis, neonatal infections, diarrhea and malaria. Current strategies to tackle antimicrobial resistance in pediatric populations are discussed.

View Article and Find Full Text PDF

Genomics costing tool: considerations for improving cost-efficiencies through cross scenario comparison.

Front Public Health

January 2025

Technical Advice and Partnership Department, The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland.

Next-generation sequencing (NGS) is crucial for monitoring and investigating infectious disease outbreaks, providing essential data for public health decisions. The COVID-19 pandemic has significantly expanded pathogen sequencing and bioinformatics capacities worldwide, creating an opportunity to leverage these advancements for other pathogens with pandemic and epidemic potential. In response to the need for a systematic cost estimation approach for sustainable genomic surveillance, particularly in low- and middle-income countries, five institutions collaborated to develop the genomics costing tool (GCT).

View Article and Find Full Text PDF

Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing.

View Article and Find Full Text PDF

γδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!