A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Symmetric spatial encoding in ultrafast 2D NMR spectroscopy. | LitMetric

Symmetric spatial encoding in ultrafast 2D NMR spectroscopy.

J Magn Reson

Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.

Published: January 2006

Single-scan multidimensional spectroscopy utilizes spatial dimensions for encoding the indirect-domain internal spin interactions. Various strategies have been hitherto demonstrated for fulfilling the encoding needs underlying this methodology; in analogy with their time-domain counterparts all of them have in common the fact that they proceed monotonically-starting at one end of the sample and concluding at the other. The present manuscript discusses another possibility that arises for the case of amplitude-modulated ultrafast nD NMR, whereby the spatial encoding progresses from both ends of the sample simultaneously towards the center. Such symmetric encoding is compatible with continuous or discrete excitations as well as with homonuclear or heteronuclear correlations, and exhibits a number of advantages vis-à-vis the unidirectional encodings that have been used so far: it originates echoes that are free from large first-order phase distortions, and yields nD peaks possessing a purely-absorptive character. It has the added advantage that for a given indirect-domain spectral resolution it can complete its task in half the time required by a conventional monotonic spatial encoding, leading to potentially important gains in sensitivity. The main features underlying this new spatially symmetric encoding protocol are derived, and its advantages are demonstrated with a series of amplitude-modulated homo- and hetero-nuclear 2D ultrafast NMR examples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2005.08.015DOI Listing

Publication Analysis

Top Keywords

spatial encoding
12
ultrafast nmr
12
symmetric encoding
8
encoding
7
symmetric spatial
4
encoding ultrafast
4
nmr spectroscopy
4
spectroscopy single-scan
4
single-scan multidimensional
4
multidimensional spectroscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!