Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue.

Anal Biochem

School of Chemistry and Chemical Engineering, Southwest China Normal University, Chongqing 400715, People's Republic of China.

Published: November 2005

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2005.08.006DOI Listing

Publication Analysis

Top Keywords

resonance rayleigh
4
rayleigh scattering
4
scattering method
4
method determination
4
determination tetracycline
4
tetracycline antibiotics
4
antibiotics uranyl
4
uranyl acetate
4
acetate water
4
water blue
4

Similar Publications

Microwave Surface and Lamb Waves in a Thin Diamond Plate: Experimental and Theoretical Investigation.

Ultrasonics

January 2025

Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.

Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!