3-, 4-, and 2-ferrocenylazobenzenes, 1, 2, and 3, respectively, and several derivatives of 1 were synthesized, and their photoisomerization behaviors were examined. The molecular structures of 1 and its derivatives, 2-chloro-5-ferrocenylazobenzene (5) and 3-ferrocenyl-4'-hydroxylazobenzene (11), were determined by X-ray diffraction analysis. 3-Ferrocenyl compound 1 undergoes reversible trans-to-cis isomerization with a single green light source and the Fe(III)/Fe(II) redox change. 4- and 2-Ferrocenyl compounds, 2 and 3, also respond to green light in addition to UV light, exciting the pi-pi* transition, but the cis molar ratio in the photostationary state (PSS) is lower than that of 1. The response to green light in 2 and 3 is caused by the MLCT (from Fe d orbital to azo pi* orbital) band excitation, while the character of the MLCT band, as estimated by time-dependent density functional theory calculations, differs between 1 and 2. The oxidized form of 2 undergoes facile cis-to-trans thermal isomerization. Both 1 and 2 undergo facile protonation and show proton-catalyzed cis-to-trans isomerization. Among the derivatives of 1, 2-chloro-5-ferrocenylazobenzene (5) exhibits the highest cis molar ratio (47%) in the PSS of green light irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic051184rDOI Listing

Publication Analysis

Top Keywords

green light
16
derivatives 2-chloro-5-ferrocenylazobenzene
8
cis molar
8
molar ratio
8
light
5
photon- electron-
4
electron- proton-induced
4
isomerization
4
proton-induced isomerization
4
isomerization behavior
4

Similar Publications

Photo-thermal catalysis, leveraging both thermal and non-thermal solar contributions, emerges as a sustainable approach for fuel and chemical synthesis. In this study, an Fe-based catalyst derived from a metal-organic framework is presented for efficient photo-thermal ammonia (NH) decomposition. Optimal conditions, under light irradiation without external heating, result in a notable 55% NH conversion.

View Article and Find Full Text PDF

Visible-Light-Induced Oxidation of Styrene by a Polyoxovanadate-Based Carboxylate Derivative.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

Revealing the design and synthesis of precisely tailored crystalline catalysts for achieving efficient photocatalytic conversion of styrene into high-value-added products remains a challenging task. In this work, a highly stable crystalline polyoxovanadate functionalized by the dl-tartaric acid ligand H[VO(HO)(tart)]·HO [, tart = CHO] was successfully synthesized by conventional aqueous solution methods. The photocatalytic performance was evaluated for the photosynthesis of styrene oxide by employing an oxygen source as the oxidant in the visible light (>420 nm) conditions at room temperature with compound as a heterogeneous catalyst.

View Article and Find Full Text PDF

Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative.

View Article and Find Full Text PDF

The spin-wave energy spectrum and transition temperature of the two-dimensional VSe2-like: A retarded Green's function method study.

J Phys Condens Matter

January 2025

Northeastern University, College of Science, Northeastern University, Shenyang 110819, China, Shenyang, Liaoning, 110819, CHINA.

Based on the recent discovery of intrinsic magnetism in monolayer films VSe2, we have constructed a two-dimensional (2D) Heisenberg model incorporating the 1T and 2H structures. These configurations consist of three layers: the upper and lower surface layers and a middle layer. Using the retarded Green's function method, we investigate the spin-wave energy spectrum, spin-wave density of states, and transition temperature of the system.

View Article and Find Full Text PDF

Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!