Evaluation of glass materials by using the line-focus-beam ultrasonic-material-characterization system.

IEEE Trans Ultrason Ferroelectr Freq Control

Department of Electrical Engineering, Tohoku University, Sendai 980-8579, Japan.

Published: July 2005

We developed experimental procedures to evaluate glass materials using the line-focus-beam ultrasonic-material-characterization (LFB-UMC) system. We prepared 28 specimens of a commercial borosilicate glass from random lots, and measured the velocities of leaky-surface acoustic waves (LSAWs) and leaky-surface-skimming compressional waves (LSSCWs), VLSAW and VLSSCW, using V(z) curve measurements at 225 MHz and 23 degrees C. The velocities for VLSAW ranged from 3121.83 m/s to 3149.77 m/s, with a maximum deviation of 27.94 m/s. The velocities for VLSSCW ranged from 5547.7 m/s to 5585.0 m/s, with a maximum deviation of 37.3 m/s. To investigate these observed variations in VLSAW and VLSSCW, we measured the bulk acoustic wave (BAW) properties, viz., longitudinal and shear velocities, then the densities and the chemical compositions of 8 of the 28 specimens. The LFB-UMC measurements confirmed that decreases in VLSAW and VLSSCW occur mainly with the B2O3 dopant concentrations, corresponding to the decrease of shear-wave and longitudinal-wave velocities that are caused by the decrease of the stiffness constants c44 and c11, respectively, rather than with decreased densities. The sensitivities are -6.36 x 10(-2) wt%/(m/s) for VLSAW and -4.87 x 10(-2) wt%/(m/s) for VLSSCW. This demonstrates that the LFB-UMC system is effective for evaluating glass materials and controlling production processes, by analyzing variations in chemical composition through the super-accurate velocity measurements of LSAWs and LSSCWs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tuffc.2005.1504001DOI Listing

Publication Analysis

Top Keywords

glass materials
12
vlsaw vlsscw
12
materials line-focus-beam
8
line-focus-beam ultrasonic-material-characterization
8
lfb-umc system
8
m/s maximum
8
maximum deviation
8
10-2 wt%/m/s
8
m/s
6
velocities
5

Similar Publications

Whispering-gallery mode sensor based on coupling of tapered two-mode fiber and glass capillary.

Rev Sci Instrum

January 2025

Hubei Key Laboratory of Optoelectronic Conversion Materials and Devices, Hubei Engineering Research Center for Micronano Optoelectronic Devices and Integration, College of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China.

A novel whispering-gallery mode (WGM) sensor is fabricated by coupling a tapered two-mode fiber and a glass capillary. By utilizing the relatively large orifice of glass capillaries, polydimethylsiloxane (PDMS) and magnetic fluid are directly injected into two WGM structured glass capillaries, respectively, allowing these materials to substantially interact with the light field of the WGM, thereby achieving temperature, pressure, and magnetic field measurements. λ1 and λ2 are the two resonant peak wavelengths of the WGM after injecting PDMS into a glass capillary.

View Article and Find Full Text PDF

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.

View Article and Find Full Text PDF

Toughening of thermoset composites using glass/polypropylene commingled stitching yarns.

Heliyon

January 2025

Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM), School of Electrical and Mechanical Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.

This paper investigates the damage resistance and tolerance of thermoset composite laminates stitched by glass and hybrid glass/polypropylene commingled yarns. Different impact energies (10-70 J) were applied to stitched composite laminates before compression after impact (CAI) tests were conducted. The results showed that, except for 70J, commingled yarn-stitched laminates absorbed more energy than glass-stitched laminates.

View Article and Find Full Text PDF

Background: It is well known that deterioration is a big concern in the food supply chain. The problem is more serious in handling of traditional foods in developing country such as Ethiopia, due to the limited knowledge about the optimum processing, packaging and storage conditions.

Objective: This study aimed to investigate the effect of packaging material and storage condition on the shelf life of Ethiopian traditional paste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!