Photocatalytic degradation of low level formaldehyde in the gas phase was studied in a intermittent recirculation photocatalytic reaction system with TiO2 porous film photocatalyst coated on stainless steel mesh. The effects of carrier of the photocatalyst, coating cycle of the photocatalyst, the initial concentration of formaldehyde and the illumination source were investigated respectively. The study of the aging stability of the photocatalyst was carried out as well. Results show that the degradation efficiency of formaldehyde increased with the increase of mesh number. The degradation efficiency also increased with the increase of carrier number, but the influence of carrier number on the degradation efficiexcy was gradually weakened with increasing carrier number. The activity of the photocatalyst firstly increased and then decreased when coating cycle increased from 1 cycle to 6 cycles. When initial concentration was in the range of 1.34 - 10.72 mg/m3, the change of formaldehyde concentration markedly increased with the increase of initial concentration, but the degradation efficiency increased and subsequently decreased with increasing initial concentration. The degradation efficiency with germicidal light was approximately 19.0% higher than that with black light holding same power, and the enhancement in light intensity could approximately increase the degradation efficiency by 20.5%. Finally, the experiment on the longevity of the photocatalyst indicated that the photocatalyst had the good photocatalytic activity after being used for 4 cycles.
Download full-text PDF |
Source |
---|
ISME J
January 2025
HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.
Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.
Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.
Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.
Biol Open
January 2025
Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.
View Article and Find Full Text PDFBiodegradation
January 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!