We have isolated and characterized N-linked oligo-saccharides that are significantly increased in glioblastoma tissue and cell lines. The structures of N-linked oligosaccharides present in 3 human normal brain tissues, 15 patients with glio-blastoma and 3 glioma cell lines were analyzed by partially automated technique for the isolation and fluorescent labeling of N-linked sugar chains from glycoproteins. Characterization of the sugar chains was achieved with the use of a combination of HPLC columns and a highly sensitive fluorescence detector at femtomole levels. By collecting peaks which accounted for 0.1% or more, sixteen different oligosaccharide structures were characterized from glioblastoma tissue and cell lines. The 16 oligosaccharide structures accounted for 48.9% of the total N-linked oligosaccharides present in glioblastoma tissue. The major components of total oligosaccharides were similar to those of normal brain tissue. The amount of a biantennary bigalactosylated structure with one core fucosylation (A2G2F) was present in increased levels in glioblastoma tissue (mean = 2.90%) and glioma cell lines (mean = 5.60%), while being less than 0.1% in normal brain tissue. Expression of highly branched tetra-antennary N-glycans that are usually detected in lungs or hepatocellular cancer was not observed. Tissue glioma cells and cultured cells also displayed strong LCA-lectin binding, which binds to sugar chains with core fucose (including A2G2F), while normal brain tissue did not. Moreover, LCA lectin inhibited proliferation of glioma cells through induction of apoptosis. A2G2F on glioma specimens may provide a novel marker and target for the diagnosis and treatment of glioblastoma, respectively.
Download full-text PDF |
Source |
---|
Cureus
January 2025
Neurosurgery, Son Espases University Hospital, Palma, ESP.
Introduction: 5-aminolevulinic acid (5-ALA) fluorescence used in glioma surgery has different intensities within tumors and among different patients, some molecular and external factors have been implicated, but there is no clear evidence analyzing the difference of fluorescence according to glioma molecular characteristics. This study aimed to compare molecular factors of glioma samples with fluorescence intensity to identify potential cofounders and associations with clinically relevant tumor features.
Methods: Tumor samples of high-grade glioma patients operated using 5-ALA for guided resection were included for comparative analysis of fluorescence intensity and molecular features.
Quant Imaging Med Surg
January 2025
Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands.
Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not commonly used in clinical practice due to the need for specifically targeted sequences.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.
Glioblastoma (GBM), the most malignant primary brain tumor in adults, has poor prognosis irrespective of therapeutic advances due to its radio-resistance and infiltrative growth into brain tissue. The present study assessed functions and putative druggability of BRCA1-associated ATM activator 1 (BRAT1) as a crucial factor driving key aspects of GBM, including enhanced DNA damage response and tumor migration. By a stable depletion of BRAT1 in GBM and glioma stem-like (GSC) cell lines, we observed a delay in DNA double-strand break repair and increased sensitivity to radiation treatment, corroborated by in vitro and in vivo studies demonstrating impaired tumor growth and invasion.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Anaesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211101, China.
Through transcriptomic analysis of patient-derived glioblastoma tissues, we identify an overactivation of inflammatory pathways that contribute to the development of a tumor-promoting microenvironment and therapeutic resistance. To address this critical mechanism, we present NanoAid, a biomimetic nanoplatform designed to target inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NanoAid employs macrophage-membrane-liposome hybrids to optimize the delivery of COX-2 inhibitor parecoxib and paclitaxel.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum, Turkey.
Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!