We investigated the feasibility of a novel photosensitizer, ATX-S10.Na (II), in photodynamic therapy (PDT) for glioma. First, PDT was performed in various brain tumor cell lines in vitro. Cytotoxicity depended upon both drug concentration and laser energy and the 50% inhibitory concentration ranged from 3.5 to 20 microg/ml. Next, PDT was performed in the subcutaneous and intracranial 9L tumor models in Fischer rats using ATX-S10.Na (II) and light from a 670-nm diode laser delivered by intratumoral insertion of an optical fiber. The effect of PDT on brain tumors was evaluated using magnetic resonance imaging. Sequential changes of the ATX-S10.Na (II) concentrations were also measured quantitatively by fluorospectrometry up to 12 h after intravenous administration in rats with intracranial and subcutaneous tumors. The concentration of ATX-S10.Na (II) in the brain tumor reached a maximum at 2 h after administration and the tumor/normal brain concentration ratio was as high as 131 at 8 h. Intratumoral PDT for intracranial tumors irradiated at this timing showed an obvious anti-tumor effect without severe side effects. The present study demonstrated the highly selective accumulation of ATX-S10.Na (II) in tumor tissue and its potent photodynamic effect in an experimental malignant glioma model.

Download full-text PDF

Source

Publication Analysis

Top Keywords

selective accumulation
8
photosensitizer atx-s10na
8
experimental malignant
8
malignant glioma
8
pdt performed
8
brain tumor
8
atx-s10na
6
pdt
5
accumulation strong
4
strong photodynamic
4

Similar Publications

Color, an intuitive element affecting human senses, can adapt to the environment of a space, evoke emotional responses, trigger and accumulate visual experiences, and enhance the effectiveness of color in shaping spatial atmosphere and reinforcing spatial divisions. In the context of rapid urban underground space development, examining the rational application of color in underground parking spaces is crucial for improving guidance, comfort, and aesthetics. This exploration is essential for achieving high-quality development in urban underground parking environments.

View Article and Find Full Text PDF

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms.

Cell Rep

January 2025

Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA. Electronic address:

The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!