To investigate the distribution of the early stage chondrocytes during the formation and closure of epiphyseal growth plate (EGP) of the domestic cat, we examined the EGP of proximal tibiae by immunohistochemistry for type VI collagen. In the epiphyseal cartilage without the secondary ossification center (SOC) and EGP in newborn cats aged 1 and 10 days, type VI collagen-positive chondrocytes were located around the cartilage canals and articular surface. In the epiphyseal cartilage with the SOC and EGP in young cats aged 1 to 3 months, type VI collagen-positive chondrocytes were located in the upper resting zone of the EGP, and then increased throughout the resting zone along with maturation. In the adult cats with the partially closed EGP, type VI collagen-positive chondrocytes were distributed throughout the remaining EGP. These findings indicate that the early stage chondrocytes characterized with type VI collagen are continuously located in the EGP during maturation. In addition, the increase of the early stage chondrocytes and the decrease of the reserve chondrocytes in the EGP along with maturation may cause the cessation of the longitudinal growth of the EGP, and finally bring about the EGP closure.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.67.927DOI Listing

Publication Analysis

Top Keywords

type collagen
12
early stage
12
stage chondrocytes
12
type collagen-positive
12
collagen-positive chondrocytes
12
egp
11
domestic cat
8
epiphyseal cartilage
8
soc egp
8
cats aged
8

Similar Publications

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.

View Article and Find Full Text PDF

Insulin-like growth factor 2 (IGF2) is a mitogenic peptide hormone expressed by various tissues. Although it is three times more abundant in serum than IGF1, its physiological and pathological roles are yet to be fully understood. Previous transcriptome sequencing studies have shown that IGF2 expression is increased in hypertrophic scar (HS); however, its role in HS formation and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of heart failure cases globally, and this incidence is increasing due to extended lifespans and accumulating comorbidities. Emerging evidence suggests that Wnt signaling plays a role in cardiomyocyte hypertrophy and cardiac fibrosis, which are key features of HFpEF. Furthermore, Porcupine (PORCN) inhibitors, which negatively regulate Wnt signaling, have shown promising results in improving cardiac function and reducing cardiac hypertrophy and/or fibrosis.

View Article and Find Full Text PDF

Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:

Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!