Oxygen and glucocorticoids modulate alphaENaC mRNA translation in fetal distal lung epithelium.

Am J Respir Cell Mol Biol

Programme in Lung Biology Research, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.

Published: February 2006

Glucocorticoid hormones play an important role in fetal lung maturation. It is unknown how they interact with changes in O2 tension, which play an important role in converting the lung from a fluid-secreting to a fluid-absorbing organ at birth. Airspace fluid absorption arises from active transepithelial Na+ transport with the amiloride-sensitive epithelial Na channel (ENaC), consisting of alpha, beta, and gamma subunits, representing the rate-limiting step under nonpathologic conditions. We investigated the individual and combined effects of dexamethasone (DEX) and PO2 on alphaENaC mRNA levels, rate of alphaENaC protein synthesis, and amiloride-sensitive short-circuit current in primary cultures of rat fetal distal lung epithelial cells. DEX significantly induced alphaENaC mRNA in fetal (3%) and postnatal (21%) O2, but increases in alphaENaC protein synthesis and function occurred only when epithelia were grown under a postnatal PO2. Sucrose density gradient analyses showed that DEX treatment of cells cultured at 3% O2 decreased the association of alphaENaC mRNA with large polysomes and enhanced the association with small polysomes. Conversely, incubation of DEX-treated cells in 21% O2 restored alphaENaC mRNA association with large polysomes. No significant changes were seen in the overall polyribosome profiles or in the distribution of mRNAs encoding beta and gamma subunits of ENaC or cytokeratin 18, indicating specific modulation of alphaENaC mRNA translation. These data suggest that postnatal O2 exposure may be important for efficient translation of the alphaENaC mRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2005-0273OCDOI Listing

Publication Analysis

Top Keywords

alphaenac mrna
28
alphaenac
9
mrna translation
8
fetal distal
8
distal lung
8
play role
8
beta gamma
8
gamma subunits
8
alphaenac protein
8
protein synthesis
8

Similar Publications

Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).

View Article and Find Full Text PDF

The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys.

Hypertens Res

August 2024

The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.

To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4 and Drd4 mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4 than Drd4; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4 relative to Drd4 mice. Drd4 mice exhibited increased renal sodium-hydrogen exchanger 3 (NHE3), sodium-potassium-2-chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa-K-ATPase on LS, and increased αENaC on HS.

View Article and Find Full Text PDF

Submersion and hypoxia inhibit alveolar epithelial Na transport through ERK/NF-κB signaling pathway.

Respir Res

April 2023

Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.

Background: Hypoxia is associated with many respiratory diseases, partly due to the accumulation of edema fluid and mucus on the surface of alveolar epithelial cell (AEC), which forms oxygen delivery barriers and is responsible for the disruption of ion transport. Epithelial sodium channel (ENaC) on the apical side of AEC plays a crucial role to maintain the electrochemical gradient of Na and water reabsorption, thus becomes the key point for edema fluid removal under hypoxia. Here we sought to explore the effects of hypoxia on ENaC expression and the further mechanism related, which may provide a possible treatment strategy in edema related pulmonary diseases.

View Article and Find Full Text PDF

The intercalated cell Cl/HCO exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function.

View Article and Find Full Text PDF

Background: Activation of the mineralocorticoid receptor (MR) is involved in the pathophysiology of diabetic vascular complications. In recent years, it has been indicated that the MR expressed in retinal Müller cells plays an important role in regulating the potassium and water balance in the retina. Therefore, it has also been speculated that abnormal MR signaling contributes to edematous diseases of the retina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!