In virus models explored in detail in mice, CTL typically focus on a few immunodominant determinants. In this study we use a multipronged approach to understand the diversity of CTL responses to vaccinia virus, a prototypic poxvirus with a genome approximately 20-fold larger than that of the model RNA viruses typically studied in mice. Based on predictive computational algorithms for peptide binding to HLA supertypes, we synthesized a panel of 2889 peptides to begin to create an immunomic map of human CTL responses to poxviruses. Using this panel in conjunction with CTLs from vaccinia virus-infected HLA transgenic mice, we identified 14 HLA-A*0201-, 4 HLA-A*1101-, and 3 HLA-B*0702-restricted CD8(+) T cell determinants distributed over 20 distinct proteins. These peptides were capable of binding one or multiple A2, A3, and B7 supertype molecules with affinities typical of viral determinants. Surprisingly, many of the viral proteins recognized are predicted to be late gene products, in addition to the early intermediate gene products expected. Nearly all of the determinants identified have identical counterparts encoded by modified vaccinia virus Ankara as well as variola virus, the agent of smallpox. These findings have implications for the design of new smallpox vaccines and the understanding of immune responses to large DNA viruses in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.8.5504 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.
Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!