Effects of rhythmic muscle compression on cardiovascular responses and muscle oxygenation at rest and during dynamic exercise.

Exp Physiol

Laboratory of Exercise Physiology, Institute of Health and Sport Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba City, 305-8574, Japan.

Published: January 2006

We examined the way in which the duration of rhythmic muscle compressions affects cardiovascular responses and muscle oxygenation at rest and during dynamic exercise. We measured the mean arterial pressure (MAP), heart rate (HR) and oxygenation of the vastus lateralis muscle (by near-infrared spectroscopy) in eight healthy male subjects at rest and during supine bicycle exercise (50 and 100 W at 60 r.p.m.) while applying pulsed muscle compressions at 1000 ms intervals. Compression pressure and durations were 150 mmHg and 300, 600, 900 and 1000 ms (1000 ms being static continuous compression), respectively. During exercise, the pulsed leg compression was synchronized to each thigh extensor muscle contraction. The observed changes in muscle oxygenation were dependent on compression duration (increased at 300 ms, no change at 600 ms and decreased at 900 or 1000 ms) and were different from those seen at rest (increases at < 1000 ms and decrease at 1000 ms). This suggests that the effects of external pulsed muscle compression may have a duration threshold below which muscle pumping counteracts the obstruction to flow caused by the compression, and that the threshold is set at a shorter compression duration during exercise than at rest. Although HR and MAP did not change during pulsed compression at rest, during exercise they both increased progressively as compression duration increased. Thus, while exercising, the increased MAP and HR seen during the compression could be due to the combination and interaction of mechanical effects and the muscle mechanoreflex and/or metaboreflex.

Download full-text PDF

Source
http://dx.doi.org/10.1113/expphysiol.2005.032052DOI Listing

Publication Analysis

Top Keywords

compression duration
16
muscle oxygenation
12
muscle
11
compression
11
rhythmic muscle
8
muscle compression
8
cardiovascular responses
8
responses muscle
8
oxygenation rest
8
rest dynamic
8

Similar Publications

We demonstrate a dual-crystal Yb:YAG bulk regenerative amplifier that delivers a hundred-watt average power and millijoule-class pulse energy. The repetition rate of the presented laser is tunable from 50 kHz to 300 kHz, with the highest pulse energy and laser power of 1.9 mJ and 108.

View Article and Find Full Text PDF

High-order solitons exhibit fascinating dynamics during their propagation in anomalous dispersion media. High-order soliton dynamics have been intensively exploited for extreme pulse compression and coherent ultra-broadband spectrum generation. Despite recent advances, most previous studies have been restricted to soliton propagation external to a laser cavity, leaving the intracavity generation and evolution of high-order solitons less explored.

View Article and Find Full Text PDF

Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.

View Article and Find Full Text PDF

This study investigates the mechanical and microstructural properties of loose sandy soil stabilized with alkali-activated Ground Granulated Blast Furnace Slag (GGBFS). To examine the effects of varying GGBFS contents, curing times, and confining pressures on mechanical behavior, undrained triaxial and unconfined compressive strength (UCS) tests were conducted. Microstructural analyses using FE-SEM, EDX, and FTIR were performed to elucidate the nature and development of cementation.

View Article and Find Full Text PDF

Introduction: Non-surgical management of non-neurological thoracic or lumbar spine (TL) fractures seems to provide good results in the civilian population, leading to return to work in most cases. However, data on the military population are limited, particularly regarding return to duty. This study aimed to describe a population of French military patients with traumatic non-neurological TL fractures and the outcomes of non-surgical management regarding operational capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!