Background: Bronchiolitis obliterans syndrome (BOS) remains the primary factor limiting successful lung transplantation. In asthma and lung transplantation BOS-increased sub-mucosal vascularity has been shown to contribute to airflow limitation. Vascularity has 2 components: sprouting angiogenesis (more vessels) and microvascular enlargement (larger vessels). We hypothesized that the lack of a reanastomosed bronchial arterial blood supply at the time of transplant might stimulate angiogenesis and be a risk factor for subsequent BOS.
Methods: Twenty-seven initially stable lung transplant recipients (BOS 0) were recruited at 148 +/- 80 days post-transplant and underwent clinical and bronchoscopic longitudinal follow-up for at least 3 years. Eight remained stable and BOS developed in 19. Nine normal controls were also recruited. Airway vasculature was examined immunohistochemically in endobronchial biopsy (EBB) specimens with collagen IV antibody, quantified by computer image analysis, and expressed as average vessel size, vessel number, and overall vascularity. The effects of demographic, clinical, bronchoalveolar lavage (BAL), and EBB variables on airway vasculature were analyzed in a multivariate model.
Results: No significant differences in airway vascularity were found between stable and BOS lung transplant recipients cross-sectionally or longitudinally. However, both lung transplant groups at baseline showed significantly greater airway vascularity compared with normal controls (p < .05). Multivariate analysis suggested that the percentage of BAL CD3+ cells and acute rejection are the most influential variables on airway vasculature.
Conclusions: This study suggests early and persistent airway vasculature changes occur in lung transplant recipients, mainly manifested as microvascular enlargement. Potentially this baseline change contributes to airway obstruction and also puts all lung transplant recipients at risk for further exponential loss of airway caliber with any subsequent airway inflammatory insult.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.healun.2004.11.008 | DOI Listing |
Interdiscip Cardiovasc Thorac Surg
January 2025
Critical Care Department, Finis Terrae University. Santiago, Chile.
Silicosis, a fibrotic lung disease caused by crystalline silica inhalation, presents unique challenges in lung transplantation. This case reports an unprecedented complication in a lung transplant recipient with chronic silicosis. A man in his 60 s, post left single-lung transplantation for silica-induced pneumoconiosis, developed acute respiratory deterioration following routine bronchoscopy.
View Article and Find Full Text PDFTranspl Infect Dis
January 2025
Unit of Infectious Diseases and Infection Control, ISMETT-IRCCS Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy.
Introduction: Infections significantly impact morbidity and mortality in lung transplant (LuTx) recipients. This survey focused on documenting current practices regarding the prevention and management of infections in LuTx in Italy.
Methods: A 52-question survey was administered online in the period from December 1, 2023, to January 31, 2024, assessing center characteristics, Tx team organization, microbiological investigations, infection prevention, and management.
Eur J Case Rep Intern Med
December 2024
Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
Unlabelled: Sinusoidal obstruction syndrome (SOS) is a distinctive and potentially fatal form of hepatic injury that mainly occurs after hematopoietic-stem cell transplantation but also due to many other conditions including drug or toxin exposure. Recently, immune checkpoint inhibitors (ICIs) have revolutionised the treatment of many solid organ malignancies. Furthermore, as their use has become more widespread, rare toxicities have emerged.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
December 2024
Toronto Lung Transplant Program, Toronto General Hospital, Toronto, Canada.
Ex vivo lung perfusion (EVLP) is used to evaluate donor lungs prior to lung transplantation. Development of pulmonary edema during EVLP is generally thought to represent inflammatory breakdown of the air-fluid barrier and these lungs are declined for transplant. We present the case of a donor lung that underwent stapled wedge resection during cold storage for air leak and the subsequent development of profound (∼650 mL) pulmonary edema around the staple line during EVLP.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
December 2024
Department of Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Background: Extracorporeal membrane oxygenation (ECMO) is increasingly used as a bridge to lung transplantation. Although other mechanical circulatory support devices have been associated with anti-human leukocyte antigen antibody formation, including de novo donor-specific antibodies (dnDSA), it is unknown whether ECMO is a sensitizing exposure.
Methods: This was a single-center retrospective cohort study of lung transplant recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!