[Aggregation and toxicity of the proteins with polyQ repeats].

Postepy Biochem

Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland.

Published: December 2005

Expansion of CAG triplet repeats is a cause of at least nine late-onset neurodegenerative disorders. The mutation manifests itself as a long stretch of glutamine repeats. The number of approximately 38 repeats is usually a threshold at which the disease develops and the longer the polyglutamine tract, the earlier the onset of disease. A common feature of these disorders is the presence of protein aggregates which are believed to be formed either by the formation of hydrogen bonds between amide residues or through the action of the enzyme transglutaminase. Mutated proteins may cause neurodegeneration by sequestering vital cellular proteins, inhibiting proteasomal system or by inducing apoptosis. It has been proved that molecular chaperones may block the negative effects of expression of mutated genes and for this reason they are a promising object for various therapeutic research.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[aggregation toxicity
4
toxicity proteins
4
proteins polyq
4
polyq repeats]
4
repeats] expansion
4
expansion cag
4
cag triplet
4
triplet repeats
4
repeats late-onset
4
late-onset neurodegenerative
4

Similar Publications

Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).

View Article and Find Full Text PDF

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

The search for new hemostatic materials remains a priority for researchers, as the problem of uncontrolled hemorrhage during surgical interventions or traumatic injuries represents a significant challenge. The objective of the study was to identify novel polysaccharide structures with enhanced hemostatic properties based on chitosan. The number of chitosan derivatives with two substituents was synthesized and characterized by H NMR, FTIR.

View Article and Find Full Text PDF

Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy.

Biomaterials

January 2025

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:

In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!