The deterioration of drinking water quality following its collection from a community well or standpipe and during storage in the home has been well documented. However, there is a view that post-supply contamination is of little public health consequence. This paper explores the potential health risk from consuming re-contaminated drinking water. A conceptual framework of principal factors that determine the pathogen load in household drinking water is proposed. Using this framework a series of hypotheses are developed in relation to the risk of disease transmission from re-contaminated drinking water and examined in the light of current literature and detailed field observation in rural Honduran communities. It is shown that considerable evidence of disease transmission from re-contaminated drinking water exists. In particular the type of storage container and hand contact with stored drinking water has been associated with increased incidence of diarrhoeal disease. There is also circumstantial evidence linking such factors as the sanitary conditions in the domestic environment, cultural norms and poverty with the pathogen load of household stored drinking water and hence the risk of disease transmission. In conclusion it is found that re-contaminated drinking water represents a significant health risk especially to infants, and also to those with secondary immunodeficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2005.037 | DOI Listing |
PLoS One
January 2025
School of Medicine, Institute of Health Science, Jigjiga University, Jigjiga, Ethiopia.
Background: One of the tropical illnesses that is often overlooked is soil-transmitted helminths, or STHs. In tropical and subtropical nations, where poor sanitation and contaminated water sources are common, they mostly impact the most vulnerable populations.
Objective: The aim of this study was to ascertain the prevalence of STHs and related risk factors among the people living in Jigjiga town, Somali region, Eastern Ethiopia.
Anal Chem
January 2025
Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States.
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, 250100, China.
Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFJ Water Health
January 2025
Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!