We calculate pulse self-compression of a 30 fs laser pulse traversing gas with different pressure gradients. We show that an appropriate density profile brings significant improvement to the self-compression by filamentation. Under an optimal pressure gradient, the pulse duration is reduced to the single optical cycle limit over a long distance, allowing easy extraction into an interaction chamber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.30.002657 | DOI Listing |
Nat Commun
October 2024
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China.
Phys Rev E
June 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Here a mechanism for self-compression of laser pulses is presented, based on period density-modulated plasma. In this setup, two pump beams intersect at a small angle within the plasma. This interaction is facilitated by the ponderomotive ion mechanism, which causes a modulation in the density of plasma with long wavelengths and low amplitude.
View Article and Find Full Text PDFWe report high-power pedestal-free ultrashort pulses in a cascade compression system. In the self-compression stage, the 2 µm ultrashort pulses with 123 fs duration and up to 21.7 W output power were obtained in a 0.
View Article and Find Full Text PDFACS Photonics
April 2024
Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain.
High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging.
View Article and Find Full Text PDFOpt Express
February 2024
We implement variational shortcuts to adiabaticity for optical pulse compression in an active nonlinear Kerr medium with distributed amplification and spatially varying dispersion and nonlinearity. Starting with the hyperbolic secant ansatz, we employ a variational approximation to systematically derive dynamical equations, establishing analytical relationships linking the amplitude, width, and chirp of the pulse. Through the inverse engineering approach, we manipulate the distributed gain/loss, nonlinearity and dispersion profiles to efficiently compress the optical pulse over a reduced distance with high fidelity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!