The lateral-line system is a unique facility of aquatic animals to locate predator, prey, or conspecifics. We present a detailed model of how the clawed frog Xenopus, or fish, can localize submerged moving objects in three dimensions by using their lateral-line system. In so doing we develop two models of a slightly different nature. First, we exploit the characteristic properties of the velocity field, such as zeros and maxima or minima, that a moving object generates at the lateral-line organs and that are directly accessible neuronally, in the context of a simplified geometry. In addition, we show that the associated neuronal model is robust with respect to noise. Though we focus on the superficial neuromasts of Xenopus the same arguments apply mutatis mutandis to the canal lateral-line system of fish. Second, we present a full-blown three-dimensional reconstruction of the source on the basis of a maximum likelihood argument.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-005-0005-0DOI Listing

Publication Analysis

Top Keywords

lateral-line system
12
submerged moving
8
moving object
8
clawed frog
8
frog xenopus
8
estimating position
4
position velocity
4
velocity submerged
4
object clawed
4
xenopus fish--a
4

Similar Publications

A hydrodynamic antenna: novel lateral line system in the tail of myliobatid stingrays.

Proc Biol Sci

January 2025

Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

Eagle rays, cownose rays and manta rays (order Myliobatiformes) have a slender tail that can be longer than the animal's body length, but its function and structure are unknown. Using histology, immunohistochemistry and three-dimensional imaging with micro-computed tomography scans, we describe the anatomy and function of the tail in , the cownose ray. The tail is an extension of the vertebral column with unique morphological specializations.

View Article and Find Full Text PDF

Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability.

Plant Cell Environ

January 2025

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.

Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.

View Article and Find Full Text PDF

Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications.

Sensors (Basel)

December 2024

In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China.

The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods.

View Article and Find Full Text PDF

HollandPTC is an independent outpatient center for proton therapy, scientific research, and education. Patients with different types of cancer are treated with Intensity Modulated Proton Therapy (IMPT). Additionally, the HollandPTC R&D consortium conducts scientific research into the added value and improvements of proton therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!