Labeling strategies for bioassays.

Anal Bioanal Chem

Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands.

Published: February 2006

AI Article Synopsis

Article Abstract

Different labeling strategies for enzymatic assays and immunoassays are reviewed. Techniques which make use of direct detection of a label, e.g. radioimmunoassays, are discussed, as are techniques in which the label is associated with inherent signal amplification. Examples of the latter, e.g. enzyme-linked immunosorbent assays or nanoparticle-label based assays, are presented. Coupling of the bioassays to chromatographic separations adds selectivity but renders the assays more difficult to apply. The advantages and drawbacks of the different analytical principles, including future perspectives, are discussed and compared. Selected applications from clinical, pharmaceutical, and environmental analysis are provided as examples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-005-3392-0DOI Listing

Publication Analysis

Top Keywords

labeling strategies
8
strategies bioassays
4
bioassays labeling
4
strategies enzymatic
4
assays
4
enzymatic assays
4
assays immunoassays
4
immunoassays reviewed
4
reviewed techniques
4
techniques direct
4

Similar Publications

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

exon 14 ex14) skipping occurs in 3-4% of non-small-cell lung cancer (NSCLC) cases. Low frequency of this alteration necessitated open-label, single-arm trials to investigate MET inhibitors. Since broad MET biomarker testing was only recently introduced in many countries, there is a lack of historical real-world data from patients with ex14 skipping NSCLC receiving conventional therapies.

View Article and Find Full Text PDF

Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb. To enhance the Pb sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B).

View Article and Find Full Text PDF

Engineering a Novel NIR RNA-Specific Probe for Tracking Stress Granule Dynamics in Living Cells.

Anal Chem

January 2025

Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.

View Article and Find Full Text PDF

Background: The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!