We report ulceroglandular tularemia affecting an 8-year-old boy and the first recovery of Francisella tularensis in Denmark. A novel real-time PCR assay was used to identify the strain as F. tularensis subsp. holarctica (type B). Multiple-locus variable-number tandem repeat analysis demonstrated a close genetic relationship to strains from Norway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1248448 | PMC |
http://dx.doi.org/10.1128/JCM.43.10.5355-5358.2005 | DOI Listing |
J Bacteriol
January 2025
Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Unlabelled: is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by to persist are not fully understood.
View Article and Find Full Text PDFS D Med
December 2024
Department of Internal Medicine, University of South Dakota Sanford School of Medicine.
Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.
View Article and Find Full Text PDFVaccine
January 2025
Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America.
Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.
Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!