In sensory systems, it is usually considered that mesopontine cholinergic neurons exert their modulatory action in the thalamus by enhancing the relay of sensory messages during states of neural network desynchronization. Here, we report a projection heretofore unknown of these cholinergic cells to the interpolar division of the brainstem trigeminal complex in rats. After FluoroGold injection in the interpolar nucleus, a number of retrogradely labeled cells were found bilaterally in the pedunculopontine tegmental nucleus, and immunostaining revealed that the vast majority of these cells were also positive for choline acetyltransferase. Immunostaining for the acetylcholine vesicular transporter confirmed the presence of cholinergic terminals in the interpolar nucleus, where electron microscopy showed that they make symmetric and asymmetric synaptic contacts with dendrites and axon terminals. In agreement with these anatomical data, recordings in slices showed that the cholinergic agonist carbachol depolarizes large-sized interpolaris cells and increases their excitability. Local application of carbachol in vivo enhances responses to adjacent whiskers, whereas systemic administration of the cholinergic antagonist scopolamine produces an opposite effect. Together, these results show that mesopontine cholinergic neurons exert a direct, effective control over receptive field size at the very first relay stations of the vibrissal system in rodents. As far as receptive field synthesis in the lemniscal pathway relies on intersubnuclear projections from the spinal complex, it follows that cholinergic modulation of sensory transmission in the interpolar nucleus will have a direct bearing on the type of messages that is forwarded to the thalamus and cerebral cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725759 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3073-05.2005 | DOI Listing |
Curr Biol
August 2024
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. Electronic address:
The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis.
View Article and Find Full Text PDFJ Comp Neurol
November 2022
Ushimado Marine Institute (UMI), Okayama University, Okayama, Japan.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) have been identified as itch mediators in the spinal and trigeminal somatosensory systems in rodents. In primates, there are few reports of GRP/GRPR expression or function in the spinal sensory system and virtually nothing is known in the trigeminal system. The aim of the present study was to characterize GRP and GRPR in the trigeminal and spinal somatosensory system of Japanese macaque monkeys (Macaca fuscata).
View Article and Find Full Text PDFCell Rep
April 2022
Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal. Electronic address:
Chromosome segregation in mammals relies on the maturation of a thick bundle of kinetochore-attached microtubules known as k-fiber. How k-fibers mature from initial kinetochore microtubule attachments remains a fundamental question. By combining molecular perturbations and phenotypic analyses in Indian muntjac fibroblasts containing the lowest known diploid chromosome number in mammals (2N = 6) and distinctively large kinetochores, with fixed/live-cell super-resolution coherent-hybrid stimulated emission depletion (CH-STED) nanoscopy and laser microsurgery, we demonstrate a key role for augmin in kinetochore microtubule self-organization and maturation, regardless of pioneer centrosomal microtubules.
View Article and Find Full Text PDFMol Pain
May 2022
Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, China.
The anterior cingulate cortex (ACC) is a key cortical region that plays an important role in pain perception and emotional functions. Previous studies of the ACC projections have been collected primarily from monkeys, rabbits and rats. Due to technological advances, such as gene manipulation, recent progress has been made in our understanding of the molecular and cellular mechanisms of the ACC-related chronic pain and emotion is mainly obtained from adult mice.
View Article and Find Full Text PDFInt J Mol Sci
February 2022
Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic.
Young sex chromosomes possess unique and ongoing dynamics that allow us to understand processes that have an impact on their evolution and divergence. The genus includes species with evolutionarily young sex chromosomes, and two species of section , namely (24, XY) and (24, XY), are well-established models of sex chromosome evolution, Y chromosome degeneration, and sex determination. In both species, the X and Y chromosomes are strongly heteromorphic and differ in the genomic composition compared to the autosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!