A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha,25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia. | LitMetric

The decline in bone mineral density that occurs after long-term treatment with some antiepileptic drugs is thought to be mediated by increased vitamin D(3) metabolism. In this study, we show that the inducible enzyme CYP3A4 is a major source of oxidative metabolism of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] in human liver and small intestine and could contribute to this adverse effect. Heterologously-expressed CYP3A4 catalyzed the 23- and 24-hydroxylation of 1,25(OH)(2)D(3). No human microsomal cytochrome P450 enzyme tested, other than CYP3A5, supported these reactions. CYP3A4 exhibited opposite product stereochemical preference compared with that of CYP24A1, a known 1,25(OH)(2)D(3) hydroxylase. The three major metabolites generated by CYP3A4 were 1,23R,25(OH)(3)D(3), 1,24S,25(OH)(3)D(3), and 1,23S,25(OH)(3)D(3). Although the metabolic clearance of CYP3A4 was less than that of CYP24A1, comparison of metabolite profiles and experiments using CYP3A-specific inhibitors indicated that CYP3A4 was the dominant source of 1,25(OH)(2)D(3) 23- and 24-hydroxylase activity in both human small intestine and liver. Consistent with this observation, analysis of mRNA isolated from human intestine and liver (including samples from donors treated with phenytoin) revealed a general absence of CYP24A1 mRNA. In addition, expression of CYP3A4 mRNA in a panel of duodenal samples was significantly correlated with the mRNA level of a known vitamin D receptor gene target, calbindin-D9K. These and other data suggest that induction of CYP3A4-dependent 1,25(OH)(2)D(3) metabolism by antiepileptic drugs and other PXR ligands may diminish intestinal effects of the hormone and contribute to osteomalacia.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.105.017392DOI Listing

Publication Analysis

Top Keywords

cyp3a4
8
antiepileptic drugs
8
small intestine
8
intestine liver
8
intestinal hepatic
4
hepatic cyp3a4
4
cyp3a4 catalyze
4
catalyze hydroxylation
4
hydroxylation 1alpha25-dihydroxyvitamin
4
1alpha25-dihydroxyvitamin implications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!