To investigate the domain structure of proteins and the function of individual domains, proteins are usually subjected to limited proteolysis, followed by isolation of protein fragments and determination of their functions. We have developed an approach we call random gene dissection (RGD) for the identification of functional protein domains and their interdomain regions as well as their in vivo complementing fragments. The approach was tested on a two-domain protein, the type IIS restriction endonuclease BfiI. The collection of BfiI insertional mutants was screened for those that are endonucleolytically active and thus induce the SOS DNA repair response. Sixteen isolated mutants of the wild-type specificity contained insertions that were dispersed in a relatively large region of the target recognition domain. They split the gene into two complementing parts that separately were unable to induce the SOS DNA repair response. In contrast, all 19 mutants of relaxed specificity contained the cassette inserted into a very narrow interdomain region that connects BfiI domains responsible for DNA recognition and for cleavage. As expected, only the N-terminal fragment of BfiI was required to induce SOS response. Our results demonstrate that RGD can be used as a general method to identify complementing fragments and functional domains in enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/05393RR01 | DOI Listing |
Biosensors (Basel)
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China.
Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA.
Purpose: The single reference variable flip angle sequence with a multi-echo stack of stars acquisition (SR-VFA-SoS) simultaneously measures temperature change using proton resonance frequency (PRF) shift and T-based thermometry methods. This work evaluates SR-VFA-SoS thermometry in MR-guided focused ultrasound in an in vivo rabbit model.
Methods: Simultaneous PRF shift thermometry and T-based thermometry were obtained in a New Zealand white rabbit model (n = 7) during MR-guided focused ultrasound surgery using the SR-VFA-SoS sequence at 3 T.
J Hazard Mater
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Electronic address:
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN 55108, USA.
Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!