The transmembrane semaphorin Sema6A controls cerebellar granule cell migration.

Nat Neurosci

Centre National de la Recherche Scientifique UMR7102, Université de Paris 6, Case 12, 9 Quai Saint-Bernard, 75005 Paris, France.

Published: November 2005

The transmembrane semaphorin protein Sema6A is broadly expressed in the developing nervous system. Sema6A repels several classes of developing axons in vitro and contributes to thalamocortical axon guidance in vivo. Here we show that during cerebellum development, Sema6A is selectively expressed by postmitotic granule cells during their tangential migration in the deep external granule cell layer, but not during their radial migration. In Sema6A-deficient mice, many granule cells remain ectopic in the molecular layer where they differentiate and are contacted by mossy fibers. The analysis of ectopic granule cell morphology in Sema6a-/- mice, and of granule cell migration and neurite outgrowth in cerebellar explants, suggests that Sema6A controls the initiation of granule cell radial migration, probably through a modulation of nuclear and/or soma translocation. Finally, the analysis of mouse chimeras suggests that this function of Sema6A is primarily non-cell-autonomous.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1555DOI Listing

Publication Analysis

Top Keywords

granule cell
20
transmembrane semaphorin
8
sema6a controls
8
cell migration
8
granule cells
8
radial migration
8
mice granule
8
granule
7
sema6a
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!