New insights into TAFs as regulators of cell cycle and signaling pathways.

Cell Cycle

Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, llkirch Cédex, France.

Published: November 2005

RNA polymerase II general transcription factor TFIID is a macromolecular complex comprising the TATA-binding protein, TBP and 13-14 evolutionary conserved TBP-associated factors, TAFs. Although genetic experiments have shown that TAFs are essential for cell cycle progression in yeast and in rapidly proliferating vertebrate cells in vitro, new experiments indicate they may be dispensible in specific developmental and physiological processes. Moreover, the TAF4 subunit of TFIID negatively regulates proliferation by inhibiting activation of the TGFbeta signalling pathway by its paralogue TAF4b. TAF4 is however essential in the retinoic acid and cAMP signalling pathways acting as a cofactor for CREB and the retinoic acid receptor, but is a negative regulator of the ATF7 transcription factor.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.4.11.2120DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
transcription factor
8
retinoic acid
8
insights tafs
4
tafs regulators
4
regulators cell
4
cycle signaling
4
signaling pathways
4
pathways rna
4
rna polymerase
4

Similar Publications

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses.

Front Immunol

January 2025

Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China.

Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response.

View Article and Find Full Text PDF

Genetically modified chickens as bioreactors for protein-based drugs.

Front Genome Ed

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors.

View Article and Find Full Text PDF

Unlabelled: Denosumab,a monoclonal IgG2 antibody directed against RANK-L,is used as a neoadjuvant therapy for inoperable or metastatic giant cell tumor of bone. Many side effects like as hypocalcemia during treatment and rarely severe hypercalcemia especially in children after discontinuation of denosumab occurred. The unpredictable onset and recurrent episodes of severe hypercalcemia increase the duration of hospitalization and the risk of complications.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!