Removal of nitrite and nitrate from drinking water has attracted great attention in recent years because of the human health risk induced by the exposure to contaminated groundwater and surface water. We have therefore tested a model nitrite oxidation system by coentrapping the NaNO2 oxidizer Nitrobacter vulgaris with polydimethylsiloxane (PDMS) copolymer and DEAE-Sephadex in a polyacrylamide gel. The copolymer and the anion exchanger facilitate the diffusion of oxygen and NaNO2, respectively, into the gel matrix. To test the nitrite-oxidizing activity, the entrapped cells were coupled to a thermal sensor. Coentrapment of 5% (wt/vol) DEAE-Sephadex with Nitrobacter vulgaris increased the nitrite-oxidizing activity by a factor of 3.7 compared to entrapped cells alone, and by the addition of 0.86% (wt/vol) artificial oxygen carrier PDMS copolymer increased the activity further to 4.3 times higher. Operational and storage stability of the coentrapped N.vulgaris also improved. This suggests that this enhanced immobilized cell system can also be used for nitrite oxidation to nitrate in drinking water as an on-line thermally monitored bioreactor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1265958PMC
http://dx.doi.org/10.1128/AEM.71.10.5888-5892.2005DOI Listing

Publication Analysis

Top Keywords

nitrobacter vulgaris
12
copolymer deae-sephadex
8
nitrate drinking
8
drinking water
8
nitrite oxidation
8
pdms copolymer
8
nitrite-oxidizing activity
8
entrapped cells
8
improvement nano2-oxidizing
4
activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!