Background: It has been hypothesized that in renal failure, exogenous glycation compounds from food accumulate and play a major pathogenetic role when renal excretion is impaired.

Methods: To address this, a diet containing a defined amount of the lysine Amadori product (AP) lactuloselysine was used. Plasma concentrations and cumulative urinary excretion of AP were assessed in 16 healthy subjects, 12 renal failure patients and 6 continuous ambulatory peitoneal dialysis (CAPD) patients. Amadori product was measured as furosine using reverse phase high performance liquid chromatography (RP-HPLC) after acid hydrolysis.

Results: A diet low in glycation compounds significantly decreased excretion of APs in healthy subjects. In healthy individuals, ingestion of lactuloselysine bound to food proteins caused only a minor acute increase (8.24+/-1.11 mg/day, 2% of the administered dose) of AP excretion in the urine; in patients with renal failure not yet on dialysis, the increase in AP excretion in the urine was significantly less (4.0+/-0.51 mg/day) and the same was true in CAPD patients (0.21+/-0.09 mg/day). The plasma concentration of total APs, i.e. the sum of APs as free amino acids and residues bound to plasma proteins, did not change in any of the three groups, however.

Conclusion: Dietary APs do not accumulate in the blood even in advanced renal failure. The amount of APs measured as furosine excreted in the urine is significantly less, however, in renal failure and CAPD patients compared with healthy subjects. Although the findings exclude accumulation of lactuloselysine in renal failure, they do not generally exclude accumulation of other food-derived advanced glycation end products (AGEs).

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfi151DOI Listing

Publication Analysis

Top Keywords

renal failure
24
healthy subjects
12
capd patients
12
glycation compounds
8
amadori product
8
measured furosine
8
excretion urine
8
exclude accumulation
8
renal
7
patients
6

Similar Publications

Renal Tubular Acidosis: Core Curriculum 2025.

Am J Kidney Dis

January 2025

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.

View Article and Find Full Text PDF

Introduction: Arteriovenous (AV) fistula creation is the most common surgical procedure for providing vascular access for haemodialysis in patients with chronic kidney disease (CKD). The functioning of fistula dictates the quality of dialysis and the longevity of patients. The most common circumstances that require surgical takedown of AV fistula are thrombosis and rupture.

View Article and Find Full Text PDF

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!