Chiral hairpin polyamides linked to a Hoechst 33258 analogue at the alpha-position of the hairpin turn amino acid (1,2) were synthesized on solid phase by adopting Fmoc and ivDde techniques. The DNA-binding properties of enantiomeric conjugates 1 and 2, and N-terminal linked conjugate 3 for 8-14bp sequences were determined by spectrofluorometric and thermal melting studies. Conjugates 1 and 2 recognize a 10bp sequence, while conjugate 3 recognizes a 9bp sequence. Interestingly, R-enantiomer 1 exhibited 10- to 30-fold higher binding affinities than S-enantiomer 2 for the DNA sequences studied. These binding differences were accounted for by molecular modeling studies, which revealed that the amide proton nearest to the chiral center in R-conjugate 1 is better positioned to form hydrogen bonds to the DNA bases, while S-conjugate 2 does not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2005.08.076 | DOI Listing |
Acta Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
The development of RNA aptamers with high specificity and affinity for target molecules is a critical advancement in the field of therapeutic and diagnostic applications. This study presents the selection of a 2'-fluoro-modified mirror-image RNA aptamer through the in vitro SELEX process. Using a random RNA library, we performed iterative rounds of selection and amplification to enrich aptamers that bind specifically to the viral attenuator hairpin RNA containing the opposite chirality, which is an important part of the frameshift element.
View Article and Find Full Text PDFBiomacromolecules
October 2024
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.
Peptoids are a class of sequence-defined biomimetic polymers with peptide-like backbones and side chains located on backbone nitrogens rather than alpha carbons. These materials demonstrate a strong ability for precise control of single-chain structure, multiunit self-assembly, and macromolecular assembly through careful tuning of sequence due to the diversity of available side chains, although the driving forces behind these assemblies are often not understood. Prior experimental work has shown that linked 15mer peptoids can mimic the protein helical hairpin structure by leveraging the chirality-inducing nature of bulky side chains and hydrophobicity, but there are still gaps in our understanding of the relationship between sequence, stability, and particular secondary or tertiary structure.
View Article and Find Full Text PDFAnal Chim Acta
August 2024
School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China. Electronic address:
Background: The COVID-19 pandemic, caused by the novel coronavirus, has had a profound impact on global health and economies worldwide. This unprecedented crisis has affected individuals, communities, and nations in diverse manners. Developing simple and accurate diagnostic methods is an imperative task for frequent testing to mitigate the spread of the virus.
View Article and Find Full Text PDFAntibiotics (Basel)
July 2024
School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
Capitellacin () is a 20-residue antimicrobial β-hairpin, produced by the marine polychaeta (segmented worms) . Since its discovery in 2020, only very limited studies have been undertaken to understand capitellacin's structure-activity relationship (SAR). Using fast-flow Fmoc-SPPS, a focused library of capitellacin analogues was prepared to systematically study the influence of the two disulphide bridges on its structure and activity, and their replacement with a vinyl sulphide as a potential bioisostere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!