Purpose: To identify the function of stylohyoid and posterior digastricus (STH-PD) muscle complex by the EMG techniques.
Methods: Unaffected sides of the faces of 30 patients with facial paralysis or hemifacial spasm were investigated. A concentric needle electrode was inserted to the STH-PD muscle complex and another concentric needle electrode was inserted to the orbicularis oris (OO) muscle. Simultaneous recording were obtained from two muscles using electrical stimulation (ES) (in 25 cases) and magnetic coil stimulation (MS) (in 15 cases); and both in 10 cases. Afterwards, the function of STH-PD was studied such as whistling, lip pursing, swallowing, jaw opening and closing.
Results: (1) The motor latency of compound muscle action potential (CMAP) of the STH-PD muscle was shorter than that of OO. (2) When the facial nerve was stimulated more distally than the stylomastoid foramen, the CMAP elicited from the STH-PD muscle complex immediately disappeared. (3) Ipsilateral MS was able to elicit the motor evoked potential (MEP) from STH-PD either at intracranially (half of cases) or at the extracranially. While OO muscle was always stimulated intracranially by MS. (4) The STH-PD muscle complex could not be basically recruited by the mimicry except lip pursing. The main recruitment were provided by swallowing and jaw opening. Cortical MS were facilitated during swallowing (5) Late reflex responses appeared in the STH-PD muscle complex during infraorbital-trigeminal and facial nerve ES.
Conclusion: The STH-PD muscle complex is identified electrophysiologically. Although it is innervated by the facial nerve, its functions are mainly related with jaw opening and oropharyngeal swallowing. However, it is activated by the lip pursing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelekin.2005.06.014 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.
Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.
Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.
Protein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFIntroduction: Sarcomas are rare cancers originating from mesenchymal tissues, manifesting in diverse anatomical locations, but notably in connective tissue, muscles and the skeleton. Thoracic sarcomas present a unique diagnostic and surgical challenge attributable to their rarity and pathoanatomy. Standard practice currently comprises wide surgical excision, often accompanied by adjuvant chemotherapy and/or radiotherapy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!