During moment-based analyses of partitioning tracer tests, systematic errors in volume and concentration measurements propagate to yield errors in the saturation and volume estimates for nonaqueous phase liquid (NAPL). Derived expressions could be applied to help practitioners bracket their estimates of NAPL saturation and volume obtained from such tests. In practice, many of these effects may be overshadowed by other complications experienced in the field. Errors are propagated for systematic constant (offset) volume, proportional volume, and constant (offset) concentration errors. Previous efforts to quantify the impact of these errors were predicated upon the specific assumption that nonpartitioning and partitioning masses were equal. The current work relaxes that assumption and is therefore more general in scope. Through the use of nondimensional concentration, systematic proportional concentration errors do not affect the accuracy of the method. Specific consideration needs to be given to accurate flow measurements and minimizing baseline concentration errors when performing partitioning tracer tests in order to prevent the propagation of systematic errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es048739m | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!