A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram. | LitMetric

Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram.

Appl Opt

Production Engineering Research Laboratory, Hitachi Ltd., 292 Yoshida-cho, Totsuka-ku, Yokohama 244-0817, Japan.

Published: September 2005

A new parallel photodisplacement technique has been developed that achieves simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram, which greatly simplifies the system and the optical alignment. A linear region of photodisplacement is excited on the sample for subsurface imaging by use of a line-focused intensity-modulated laser beam, and the displacement and surface information on reflectivity and topography are detected by a parallel heterodyne interferometer with a charge-coupled device linear image sensor used as a detector. The frequencies of three control signals for excitation and detection, that is, the heterodyne beat signal, modulation signal, and sensor gate pulse, are optimized such that surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions, allowing each to be discretely reproduced from Fourier coefficients. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a remarkable speed of only 0.26 s per 256 x 256 pixel area. This new technique is promising for use in nondestructive hybrid surface and subsurface inspection and other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.005809DOI Listing

Publication Analysis

Top Keywords

surface subsurface
16
space-frequency multiplexed
12
simultaneous real-time
8
real-time imaging
8
imaging surface
8
subsurface structures
8
structures single
8
single space-frequency
8
reflectivity topography
8
subsurface
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!