Objective: Quantitative magnetic resonance imaging (MRI) of articular cartilage represents a powerful tool in osteoarthritis (OA) research, but has so far been confined to a field strength of 1.5T. The aim of this study was to evaluate the precision of quantitative MRI assessments of human cartilage morphology at 3.0T and to correlate the measurements at 3.0T with validated measurements at 1.5T.

Methods: MR images of the knee of 15 participants with OA and 15 healthy control subjects were acquired using Siemens 1.5T and 3.0T scanners. Double oblique coronal scans were obtained at 1.5T with a 1.5-mm partition thickness, at 3.0T with a 1.5-mm partition thickness, and at 3.0T with a 1.0-mm partition thickness. Cartilage volume, thickness, and surface area of the femorotibial cartilage plates were quantified using proprietary software.

Results: For 1.5-mm partition thickness at 1.5T, the precision error was 3.0% and 2.6% for cartilage volume and cartilage thickness, respectively. The error was smaller for a 1.5-mm partition thickness at 3.0T (2.6% and 2.5%) and still smaller for a 1.0-mm partition thickness at 3.0T (2.1% and 2.0%). Correlation coefficients between values obtained at 3.0T and 1.5T were high (r > or = 0.96), with no significant deviation between the two field strengths.

Conclusion: Quantitative MRI measurement of cartilage morphology at 3.0T (partition thickness 1 mm) was found to be accurate and tended to be more reproducible than at 1.5T (partition thickness 1.5 mm). Imaging at 3.0T may therefore provide superior ability to detect changes in cartilage status over time and to determine responses to treatment with structure-modifying drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.21348DOI Listing

Publication Analysis

Top Keywords

partition thickness
32
15-mm partition
16
thickness 30t
16
cartilage morphology
12
30t
11
thickness
10
cartilage
9
precision quantitative
8
magnetic resonance
8
resonance imaging
8

Similar Publications

A CT Radiologic Assessment of the Incidence of Cochlear-Facial Dehiscence and the Thickness of Bone between the Cochlea and Facial Nerve among Normal Temporal Bones.

J Neurol Surg B Skull Base

February 2025

Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, CA 90095, United States.

Cochlear-facial dehiscence (CFD) is a relatively new diagnosis which occurs when the bony partition between the labyrinthine segment of the facial nerve and the cochlea is dehiscent. This is considered one of several third window lesions which produce varying degrees of auditory and vestibular symptoms. Imaging studies have identified a consistently higher incidence of CFD when compared with the only histopathologic study present in the literature.

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Despite the significant benefits of aquatic passive sampling (low detection limits and time-weighted average concentrations), the use of passive samplers is impeded by uncertainties, particularly concerning the accuracy of sampling rates. This study employed a systematic evaluation approach based on the combination of meta-analysis and quantitative structure-property relationships (QSPR) models to address these issues. A comprehensive meta-analysis based on extensive data from 298 studies on the Polar Organic Chemical Integrative Sampler (POCIS) identified essential configuration parameters, including the receiving phase (type, mass) and the diffusion-limiting membrane (type, thickness, pore size), as key factors influencing uptake kinetic parameters.

View Article and Find Full Text PDF

The shielding performance and activation susceptibility of a sandwich wall in the proton therapy facility of China Medical University Hospital were investigated in an integrated manner using FLUKA Monte Carlo simulations. The 2-m-thick partition wall between two adjoining treatment rooms had a three-layered structure, which comprised a 0.2-m-thick iron layer sandwiched between two layers of 0.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!