Abundant approximately 28-nucleotide RNAs that are thought to direct histone H3 lysine 9 (H3K9) methylation and promote the elimination of nearly 15 Mbp of DNA from the developing somatic genome are generated during Tetrahymena thermophila conjugation. To identify the protein(s) that generates these small RNAs, we studied three Dicer-related genes encoded within the Tetrahymena genome, two that contain both RNase III and RNA helicase motifs, Dicer 1 (DCR1) and DCR2, and a third that lacks the helicase domain, Dicer-like 1 (DCL1). DCL1 is expressed upon the initiation of conjugation, and the protein localizes to meiotic micronuclei when bidirectional germ line transcription occurs and small RNAs begin to accumulate. Cells in which we disrupted the DCL1 gene (DeltaDCL1) grew normally and initiated conjugation as wild-type cells but arrested near the end of development and eventually died, unable to resume vegetative growth. These DeltaDCL1 cells failed to generate the abundant small RNAs but instead accumulated germ line-limited transcripts. Together, our findings demonstrate that these transcripts are the precursors of the small RNAs and that DCL1 performs RNA processing within the micronucleus. Postconjugation DeltaDCL1 cells die without eliminating the germ line-limited DNA sequences from their newly formed somatic macronuclei, a result that shows that this Dicer-related gene is required for programmed DNA rearrangements. Surprisingly, DeltaDCL1 cells were not deficient in overall H3K9 methylation, but this modification was not enriched on germ line-limited sequences as it is in wild-type cells, which clearly demonstrates that these small RNAs are essential for its targeting to specific loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1265777PMC
http://dx.doi.org/10.1128/MCB.25.20.9151-9164.2005DOI Listing

Publication Analysis

Top Keywords

small rnas
20
deltadcl1 cells
12
germ line-limited
12
tetrahymena thermophila
8
h3k9 methylation
8
wild-type cells
8
rnas
6
cells
6
germ
5
small
5

Similar Publications

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

MRI-Based Multifunctional Nanoliposomes for Enhanced HCC Therapy and Diagnosis.

Mol Pharm

January 2025

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.

The morbidity and mortality rates of hepatocellular carcinoma (HCC) are high and continue to increase. The antitumor effects of single therapies are limited because of tumor heterogeneity and drug resistance, and the lack of real-time monitoring of tumor progression during the treatment process leads to poor therapeutic outcomes. Therefore, novel nanodelivery platforms combining tumor therapy and diagnosis have garnered extensive attention.

View Article and Find Full Text PDF

The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA.

View Article and Find Full Text PDF

Structural basis of 5' splice site recognition by the minor spliceosome.

Mol Cell

January 2025

European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:

The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!