Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurological disorder caused by a CAG repeat expansion in the DRPLA gene encoding polyglutamine (polyQ). Although previous experimental studies have demonstrated that histone deacetylase (HDAC) inhibitors are therapeutically active, known HDAC inhibitors have considerable adverse effects clinically. To identify new HDAC inhibitors for the treatment of DRPLA, we evaluated a new series of HDAC inhibitors, N-hydroxycarboxamides, with our drug screening system, which uses neuronal PC12 cells stably transfected with a part of the DRPLA gene. We found that two of four N-hydroxycarboxamides significantly reduced polyQ-induced cell death. The essential structure of these compounds is a hydroxamic acid residue, which is shared with trichostatin A, a known HDAC inhibitor. Although our study showed mild neuroprotective effects, further structural modification of compounds that retain this residue may decrease cytotoxicity and increase protective activity against polyQ toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2005.09.019DOI Listing

Publication Analysis

Top Keywords

hdac inhibitors
16
histone deacetylase
8
drpla gene
8
inhibitors
5
hdac
5
cytoprotective novel
4
novel histone
4
deacetylase inhibitors
4
inhibitors polyglutamine
4
polyglutamine toxicity
4

Similar Publications

Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive.

View Article and Find Full Text PDF

Introduction: Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors.

View Article and Find Full Text PDF

Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy.

Eur J Med Chem

January 2025

School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China. Electronic address:

Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance.

View Article and Find Full Text PDF

Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!