The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which the transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIVKU-1bMC33. The resulting virus, SHIVM2, synthesized a Vpu protein that had a slightly different Mr compared to the parental SHIVKU-1bMC33, reflecting the different sizes of the two Vpu proteins. The SHIVM2 was shown to replicate with slightly reduced kinetics when compared to the parental SHIVKU-1bMC33 but electron microscopy revealed that the site of maturation was similar to the parental virus SHIVKU1bMC33. We show that the replication and spread of SHIVM2 could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIVM2 with 100 microM rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIVKU-1bMC33. Examination of SHIVM2-infected cells treated with 50 microM rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIVM2 was as pathogenic as the parental SHIVKU-1bMC33 virus, two pig-tailed macaques were inoculated and followed for up to 8 months. Both pig-tailed macaques developed severe CD4+ T cell loss within 1 month of inoculation, high viral loads, and histological lesions consistent with lymphoid depletion similar to the parental SHIVKU-1bMC33. Taken together, these results indicate for the first time that the TM domain of the Vpu protein can be functionally substituted with the TM of M2 of influenza A virus, and shows that compounds that target the TM domain of Vpu protein of HIV-1 could serve as novel anti-HIV-1 drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2005.08.022 | DOI Listing |
Sci Rep
September 2023
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein.
View Article and Find Full Text PDFHIV-1 evades antibody-dependent cellular cytotoxicity (ADCC) responses not only by controlling Env conformation and quantity at the cell surface but also by altering NK cell activation via the downmodulation of several ligands of activating and co-activating NK cell receptors. The signaling lymphocyte activation molecule (SLAM) family of receptors, which includes NTB-A and 2B4, act as co-activating receptors to sustain NK cell activation and cytotoxic responses. These receptors cooperate with CD16 (FcγRIII) and other activating receptors to trigger NK cell effector functions.
View Article and Find Full Text PDFbioRxiv
July 2023
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key to HIV-1 protein. It has been considered exclusively a single-pass membrane protein.
View Article and Find Full Text PDFJ Struct Biol
March 2023
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States. Electronic address:
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation.
View Article and Find Full Text PDFBiomolecules
December 2022
Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
A de novo assembly algorithm is provided to propose the assembly of bitopic transmembrane domains (TMDs) of membrane proteins. The algorithm is probed using, in particular, viral channel forming proteins (VCPs) such as M2 of influenza A virus, E protein of severe acute respiratory syndrome corona virus (SARS-CoV), 6K of Chikungunya virus (CHIKV), SH of human respiratory syncytial virus (hRSV), and Vpu of human immunodeficiency virus type 2 (HIV-2). The generation of the structures is based on screening a 7-dimensional space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!