A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extraction of arsenate and arsenite species from soils and sediments. | LitMetric

Extraction of arsenate and arsenite species from soils and sediments.

Environ Pollut

Florida International University, Department of Chemistry and Biochemistry and Southeast Environmental Research Center, University Park, Miami, FL 33199, USA.

Published: May 2006

The primary objective of this study was to develop a simple method that can be used to extract the more readily mobilizable and bioavailable arsenic species from soil and sediment while at the same time minimizing the transformation between (AsIII) and (AsV), the two most commonly found arsenic species in the environment. Several extraction strategies were evaluated using phosphate as extractant in combination with either ethylenediaminetetraacetic acid (EDTA), hydroxylamine hydrochloride (NH2OH.HCl), or sodium diethyldithiocarbamate trihydrate (NaDDC). The addition of EDTA in the phosphate solution did not prevent AsIII from oxidation. While promising results were shown when 1% NH2OH.HCl was added, conversion of AsIII began to occur with extended extraction time (> 12 h). Good results were achieved using 10 mM phosphate and 0.5% NaDDC where AsIII oxidation was clearly minimized. The combined phosphate and NaDDC solution was applied to several soil and sediment samples. AsIII spiked was quantitatively recovered in all soil types tested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581511PMC
http://dx.doi.org/10.1016/j.envpol.2005.08.028DOI Listing

Publication Analysis

Top Keywords

arsenic species
8
soil sediment
8
asiii oxidation
8
asiii
5
extraction arsenate
4
arsenate arsenite
4
arsenite species
4
species soils
4
soils sediments
4
sediments primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!