An inductive passive remote sensor circuit for monitoring fermentation processes is presented. The sensor circuit consists of an interdigital capacitor and a planar coil structured on a glass laminated FR4-printed circuit board. This circuit resonates at frequencies between 2 and 4 MHz. After the resonant sensor circuit is immersed in a fermentation vessel with a cell solution, the resonant frequencies are detected by measuring the impedance of an external loop antenna. A new theory is presented to describe the behavior of the sensor circuit. In combination with a proposed equivalent circuit, the theory enables the calculation of the permittivity and conductivity of the cell solution under test by determining the resonant frequencies of the sensor without the need for any additional fitting functions. The influence of the relaxation behavior of living cells on the sensor signal with respect to the conductivity of the solution is discussed in detail. To prove the new theory, the determined permittivity is compared with the optical density of a cell solution, an indicator of cell concentration. The performed measurements show the expected correlation between the determined permittivity and optical density. The solution under test is a yeast culture in YPG medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1263/jbb.100.172 | DOI Listing |
Sensors (Basel)
December 2024
Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd., Hangzhou 310051, China.
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratorio de Circuitos Integrados (LABIC), Departamento de Electrónica, Área de Instrumentación, Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain.
The use of non-cryogenic certified commercial electronics for cryogenic applications may be attractive due to their cost and availability, but it also carries risks related to reliability, performance and thermal compatibility. The decision to use commercial components that are not certified for cryogenics instead of components specifically designed for such applications must be carefully weighed based on specific project needs and risk tolerances. This work presents the characterisation of an attenuator circuit at cryogenic temperatures used in a microwave kinetic inductance detector (MKID) readout system.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Australian Urban Research Infrastructure Network (AURIN), University of Melbourne, Melbourne, VIC 3052, Australia.
Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230002, China.
LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Instrument and Electronics, North University of China, Taiyuan 030051, China.
Tire pressure monitoring systems (TPMSs) are essential for maintaining driving safety by continuously monitoring critical tire parameters, such as pressure and temperature, in real time during vehicle operation. Among these parameters, tire pressure is the most significant, necessitating the use of highly precise, cost-effective, and energy-efficient sensing technologies. With the rapid advancements in micro-electro-mechanical system (MEMS) technology, modern automotive sensing and monitoring systems increasingly rely on MEMS sensors due to their compact size, low cost, and low power consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!