Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse.

Eur J Neurosci

Wallenberg Neuroscience Center, BMC A11, Section of Neurobiology, and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund, University, SE-221 84 Lund, Sweden.

Published: October 2005

We have made use of a reporter mouse line in which enhanced green fluorescence protein (GFP) is inserted into the Sox1 locus. We show that the GFP reporter is coexpressed with the Sox1 protein as well as with other known markers for neural stem and progenitor cells, and can be used to identify and isolate these cells by fluorescence-activated cell sorting (FACS) from the developing or adult brain and from neurosphere cultures. All neurosphere-forming cells with the capacity for multipotency and self-renewal reside in the Sox1-GFP-expressing population. Thus, the Sox1-GFP reporter system is highly useful for identification, isolation and characterization of neural stem and progenitor cells, as well as for the validation of alternative means for isolating neural stem and progenitor cells. Further, transplantation experiments show that Sox1-GFP cells isolated from the foetal brain give rise to neurons and glia in vivo, and that many of the neurons display phenotypic characteristics appropriate for the developing brain region from which the Sox1-GFP precursors were derived. On the other hand, Sox1-GFP cells isolated from the adult subventricular zone or expanded neurosphere cultures gave rise almost exclusively to glial cells following transplantation. Thus, not all Sox1-GFP cells possess the same capacity for neuronal differentiation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04352.xDOI Listing

Publication Analysis

Top Keywords

neural stem
12
stem progenitor
12
progenitor cells
12
sox1-gfp cells
12
cells
10
isolation characterization
8
characterization neural
8
sox1-gfp reporter
8
reporter mouse
8
neurosphere cultures
8

Similar Publications

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!