The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z3 at large distances (i.e., slower than at equilibrium), exhibits a sizable temperature dependence, and is attractive or repulsive depending on whether the temperature of the substrate is higher or smaller than the one of the environment. Our predictions can be relevant for experiments with ultracold atomic gases. Both dielectric and metal substrates are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.113202 | DOI Listing |
Materials (Basel)
January 2025
ArGEnCo Department, MSM Team, University of Liège, Quartier Polytech 1, Allée de la Découverte 9 (B52), 4000 Liège, Belgium.
Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due to their ability to reduce material consumption, to manufacture complex parts, and to produce out-of-equilibrium microstructures, which can be beneficial for mechanical behavior. IN718's properties are, however, very sensitive to microstructural features, which strongly depend on the manufacturing process and subsequent heat treatments.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Science and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
The moisture sorption, rheological, and glass transition properties of puffed cereals, such as brown rice, barley, adlay, and amaranth, were assessed. The puffed cereals were stored in desiccators until their moisture content reached equilibrium. Moisture sorption isotherms were measured, and monomolecular adsorption moisture content was calculated through Brunauer-Emmett-Teller (BET) analysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Aeronautical Engineering, Shandong Engineering Research Center of Aeronautical Materials and Devices, Shandong University of Aeronautics, Binzhou 256600, China.
Spray cooling, of which the essence is droplet impacting, is an efficient thermal management technique for dense electronic components in unmanned aerial vehicles (UAVs). Nanofluids are pointed as promising cooling dispersions. Since the nanofluids are unstable, a dispersant could be added to the fluid.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
National Institute for Fusion Science, Oroshi, Toki 509-5292, Gifu, Japan.
A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!