The h(c)((1)P(1)) state of charmonium has been observed in the reaction psi(2S) --> pi(0)h(c) --> (gammagamma)(gammaeta(c)) using 3.08 x10(6) psi(2S) decays recorded in the CLEO detector. Data have been analyzed both for the inclusive reaction, where the decay products of the eta(c) are not identified, and for exclusive reactions, in which eta(c) decays are reconstructed in seven hadronic decay channels. We find M(h(c)) = 3524.4 +/- 0.6 +/- 0.4 MeV which corresponds to a hyperfine splitting DeltaM(hf)(1P) triple-bond
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.102003 | DOI Listing |
Phys Rev Lett
April 2010
Institute of High Energy Physics, Beijing 100049, People's Republic of China.
We present measurements of the charmonium state h(c)(1P(1)) made with 106x10(6) psi' events collected by BESIII at BEPCII. Clear signals are observed for psi'-->pi0 h(c) with and without the subsequent radiative decay h(c)-->gamma eta(c). First measurements of the absolute branching ratios B(psi'-->pi0 h(c)) = (8.
View Article and Find Full Text PDFPhys Rev Lett
October 2008
Northwestern University, Evanston, Illinois 60208, USA.
A precision measurement of the mass of the h_{c}(1P1) state of charmonium has been made using a sample of 24.5x10;{6} psi(2S) events produced in e;{+}e;{-} annihilation at the Cornell Electron Storage Ring (CESR). The reaction used was psi(2S)-->pi;{0}h_{c}, pi;{0}-->gammagamma, h_{c}-->gammaeta_{c}, and the reaction products were detected in the CLEO-c detector.
View Article and Find Full Text PDFPhys Rev Lett
September 2005
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA.
The h(c)((1)P(1)) state of charmonium has been observed in the reaction psi(2S) --> pi(0)h(c) --> (gammagamma)(gammaeta(c)) using 3.08 x10(6) psi(2S) decays recorded in the CLEO detector. Data have been analyzed both for the inclusive reaction, where the decay products of the eta(c) are not identified, and for exclusive reactions, in which eta(c) decays are reconstructed in seven hadronic decay channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!