Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a quartz crystal microbalance (QCM) study of sliding friction for solid xenon monolayers at 77 K on Cu(111), Ni(111), graphene/Ni(111), and C(60) substrates. Simulations have predicted a strong dependence of phononic friction coefficient (eta) on surface corrugation in systems with similar lattice spacing, eta approximately U(2)(0), but this has never before been shown experimentally. In order to make direct comparisons with theory, substrates with similar lattice spacing but varying amplitudes of surface corrugation were studied. QCM data reveal friction levels proportional to U(2)(0), validating current theoretical and numerical predictions. Measurements of Xe/C(60) are also included for comparison purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.076101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!