A quasianalytical theory of tunnel ionization is developed that is applicable to general complex systems, such as large molecules. Our analysis reveals strong deviations from conventional tunnel ionization theories, dependent upon the system's geometry, angular momentum, and polarizability. A comparison of our theory with recent C(60) ionization experiments yields reasonable agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.95.073001 | DOI Listing |
This Letter describes the first, to the best of our knowledge, demonstration of a velocity measurement by nitric oxide ionization induced flow tagging and imaging (NiiFTI) of a high-enthalpy hypersonic flow utilizing naturally formed nitric oxide. The measurements were conducted in the hypervelocity expansion tunnel (HXT) at Texas A&M University in Mach 8.5 and Mach 10 flows near an ogive test article.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
JEOL Ltd, Akishima, Tokyo, 196-8558, Japan.
The McLafferty rearrangement (McLR) of the methyl valerate molecular ion has been comprehensively studied from the standpoints of the timescale for the keto-enol transformation and the change of the configuration of intermediates and transition state (TS), using mass spectrometry with electron ionization, strong-field tunnel ionization and collision-induced dissociation methods, and the global reaction route mapping (GRRM) program with quantum chemical calculations (QCCs). The timescales estimated from mass spectrometric results suggested that the McLR starts at 100 fs after ionization and is completed at least within 100 ns in the ion source. Whereas the timescales are consistent with a stepwise mechanism of fast (100 fs) and slow (10 ps) steps presented by Stamm , the QCCs put forth the possibility that an unanticipated, rapid, concerted process may be involved in completing the McLR reaction.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.
Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic features of a recently developed chiral molecule, B,N-embedded double hetero[7]helicene, at the edge of Cu(100)-supported NaCl thin film with scanning tunneling microscopy and spectroscopy. An electron transport energy gap of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!